Quantum Kinetics of Laser-Induced Electron Hole Plasmas in Nanowire Arrays
纳米线阵列中激光诱导电子空穴等离子体的量子动力学
基本信息
- 批准号:1903462
- 负责人:
- 金额:$ 11.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The interaction of light with matter is a fundamental topic of scientific research and critical to many modern technologies. The entire research field of optoelectronics is concerned with explaining the quantum interaction of light with electronic material components, increasingly on the scale of atoms and molecules. For many semiconductors, intense laser light can excite electrons, which then leave oppositely-charged shadows behind, known as "holes". These electrons and holes behave as a plasma (a gas of charged particles) confined within the solid. Solving the complicated equations describing such plasmas in three-dimensional space can be prohibitive, even on today's supercomputers. Quantum-wires, however, have a thickness over 1000 times smaller than a human hair, and they allow us to test quantum plasma models on charges that are confined to only one dimension in space. This project aims to calculate the evolution of electron-hole plasmas in interacting quantum wires, as well as the evolution of the light that excites them. The goal is to improve knowledge of optical and transport properties of light-generated plasmas on time-scales of a millionth of a billionth of a second. This knowledge is important for understanding of light-matter interactions, as well as advancements in nano-optoelectronics, sensing, and many national security applications. This project also has significant broader impacts in providing undergraduate students a chance to participate in cutting-edge research, development of new college course curricula based on the research results, and enabling public outreach.On the technical side, the goal of this project is to develop improved calculations of the ultrafast dynamics of photo-excited electron-hole plasmas in quantum wires, as well as the scattering of ultrashort laser pulses incident on a quantum wire array. The computations will couple Pseudo-Spectral Time Domain (PSTD) techniques of modeling light propagation to quantum-kinetic Semiconductor Bloch equations for the many-body plasma dynamics in the quantum wires. This project advances our knowledge of plasma dynamics in solids by dispensing with several common assumptions often used to simplify such calculations; including monochromatic laser fields, electron-hole distributions in quasi-equilibrium, spatially uniform electric fields in the medium, and neglect of longitudinal fields resulting from the spatial electron-hole plasma distribution. These assumptions are a limiting factor on today's optoelectronic calculations involving intense light, particularly on the nanometer length and femtosecond time scales. The project will seek to find experimentally measurable indicators of the correlation between the localized response of quantum-wire plasmas and the spatial-temporal features and phases of the scattered light pulses. It will also look for a measurable correlation between the current from driven electron-hole plasmas, as well as localized longitudinal electromagnetic fields due to induced, long-lasting plasma oscillations in the quantum wires. The results of the project will also be important for advancements in the emerging fields of femtosecond electronics and attosecond physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光与物质的相互作用是科学研究的基本课题,对许多现代技术至关重要。光电子学的整个研究领域都致力于解释光与电子材料组件的量子相互作用,越来越多地在原子和分子的尺度上进行。对于许多半导体来说,强烈的激光可以激发电子,然后留下带相反电荷的阴影,称为“空穴”。 这些电子和空穴的行为就像被限制在固体中的等离子体(带电粒子的气体)。即使在今天的超级计算机上,在三维空间中求解描述这种等离子体的复杂方程也是令人望而却步的。然而,量子线的厚度比人的头发丝小1000倍以上,它们允许我们在空间中仅限于一维的电荷上测试量子等离子体模型。该项目旨在计算相互作用的量子线中电子-空穴等离子体的演化,以及激发它们的光的演化。其目标是提高光产生的等离子体在百万分之一秒的时间尺度上的光学和传输特性的知识。这些知识对于理解光-物质相互作用以及纳米光电子学,传感和许多国家安全应用的进步非常重要。该项目还将为本科生提供参与前沿研究的机会,根据研究结果开发新的大学课程,并使公众能够进行宣传。在技术方面,该项目的目标是开发量子线中光激发电子-空穴等离子体超快动力学的改进计算,以及入射在量子线阵列上的超短激光脉冲的散射。 计算将耦合伪谱时域(PSTD)技术的建模光传播的量子动力学半导体布洛赫方程的量子线中的多体等离子体动力学。这个项目通过免除几个常见的假设,以简化这种计算,包括单色激光场,准平衡,空间均匀的电场在介质中的电子-空穴分布,并忽略纵向场产生的空间电子-空穴等离子体分布,推进了我们的知识等离子体动力学在固体。 这些假设是当今涉及强光的光电计算的限制因素,特别是在纳米长度和飞秒时间尺度上。 该项目将寻求通过实验找到量子线等离子体的局部响应与散射光脉冲的时空特征和相位之间的相关性的可测量指标。它还将寻找来自驱动电子-空穴等离子体的电流之间的可测量的相关性,以及由于量子线中诱导的持久等离子体振荡而产生的局部纵向电磁场。该项目的成果对飞秒电子学和阿秒物理学等新兴领域的进步也将具有重要意义。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-shot observation of nonlinear pulse splitting in a Kerr medium
克尔介质中非线性脉冲分裂的单次观测
- DOI:10.1364/ol.503170
- 发表时间:2023
- 期刊:
- 影响因子:3.6
- 作者:Chang, Yen-Yu;Gulley, Jeremy R.;Li, Zhengyan;Welch, James;Zgadzaj, Rafal;Bernstein, Aaron;Downer, M. C.
- 通讯作者:Downer, M. C.
Laser-controlled ultrafast nonlinear optical responses of interacting e – h pairs in electromagnetically coupled GaAs quantum dots
电磁耦合 GaAs 量子点中相互作用的 e-h 对的激光控制超快非线性光学响应
- DOI:10.1063/5.0081067
- 发表时间:2022
- 期刊:
- 影响因子:3.2
- 作者:Lu, Xuejun;Huang, Danhong;Gulley, Jeremy R.
- 通讯作者:Gulley, Jeremy R.
Ultrafast transverse and longitudinal response of laser-excited quantum wires
激光激发量子线的超快横向和纵向响应
- DOI:10.1364/oe.448934
- 发表时间:2022
- 期刊:
- 影响因子:3.8
- 作者:Gulley, Jeremy R.;Huang, Danhong
- 通讯作者:Huang, Danhong
Photon-drag effect and plasma oscillations in 1D semiconductors
一维半导体中的光子拖曳效应和等离子体振荡
- DOI:10.1364/fio.2022.jw5a.34
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Gulley, Jeremy R.;Cooper, Rachel;Winchester, Ethan;Woolford, Christopher;Limon, Pablo;Huang, Danhong
- 通讯作者:Huang, Danhong
Modeling of Ultrafast Propagation and Quantum Kinetics for Laser-Generated Electron-Hole Plasmas in Nanowires
纳米线中激光产生电子空穴等离子体的超快传播和量子动力学建模
- DOI:10.1364/up.2020.m4a.10
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Gulley, Jeremy R.;Huang, Danhong
- 通讯作者:Huang, Danhong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Gulley其他文献
Jeremy Gulley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Hydrodynamics-Reaction Kinetics耦合模型的厌氧膨胀床反应器三相流场数值模拟及生态-水力响应机制解析
- 批准号:51078108
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Microscopic mechanisms and kinetics of laser-induced phase explosion
合作研究:激光诱导相爆炸的微观机制和动力学
- 批准号:
2126682 - 财政年份:2021
- 资助金额:
$ 11.69万 - 项目类别:
Standard Grant
Collaborative Research: Microscopic mechanisms and kinetics of laser-induced phase explosion
合作研究:激光诱导相爆炸的微观机制和动力学
- 批准号:
2126785 - 财政年份:2021
- 资助金额:
$ 11.69万 - 项目类别:
Standard Grant
Plasma kinetics in magnetised laser driven plasmas
磁化激光驱动等离子体中的等离子体动力学
- 批准号:
2275013 - 财政年份:2019
- 资助金额:
$ 11.69万 - 项目类别:
Studentship
An in-situ study of the growth kinetics of pulsed laser deposition of multiferroic complex oxides and its influence on the properties of magnetoelectric coupling
多铁复合氧化物脉冲激光沉积生长动力学及其对磁电耦合性能影响的原位研究
- 批准号:
412136875 - 财政年份:2019
- 资助金额:
$ 11.69万 - 项目类别:
Research Grants
PLASMA KINETICS, PRE-HEAT, AND THE EMERGENCE OF STRONG SHOCKS IN LASER FUSION
等离子体动力学、预热以及激光聚变中强冲击的出现
- 批准号:
1940662 - 财政年份:2017
- 资助金额:
$ 11.69万 - 项目类别:
Studentship
Plasma kinetics, pre-heat, and the emergence of strong shocks in laser fusion
激光聚变中的等离子体动力学、预热和强冲击的出现
- 批准号:
EP/P026486/1 - 财政年份:2017
- 资助金额:
$ 11.69万 - 项目类别:
Research Grant
Plasma kinetics, pre-heat, and the emergence of strong shocks in laser fusion
激光聚变中的等离子体动力学、预热和强冲击的出现
- 批准号:
EP/P026796/1 - 财政年份:2017
- 资助金额:
$ 11.69万 - 项目类别:
Research Grant
Plasma kinetics, pre-heat, and the emergence of strong shocks in laser fusion: the hydro-kinetic regime
激光聚变中的等离子体动力学、预热和强冲击的出现:流体动力学状态
- 批准号:
EP/P023460/1 - 财政年份:2017
- 资助金额:
$ 11.69万 - 项目类别:
Research Grant
In-depth analysis of radical polymerization kinetics and mechanism by highly time-resolved electron paramagnetic resonance spectroscopy in conjunction with pulsed-laser initiation
通过高时间分辨电子顺磁共振波谱结合脉冲激光引发深入分析自由基聚合动力学和机理
- 批准号:
314868524 - 财政年份:2016
- 资助金额:
$ 11.69万 - 项目类别:
Research Grants
Precipitation kinetics during non-linear heat treatment in Laser Additive Manufacturing
激光增材制造非线性热处理过程中的析出动力学
- 批准号:
314594106 - 财政年份:2016
- 资助金额:
$ 11.69万 - 项目类别:
Research Grants