Collaborative Research: Microscopic mechanisms and kinetics of laser-induced phase explosion
合作研究:激光诱导相爆炸的微观机制和动力学
基本信息
- 批准号:2126785
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
“Explosive boiling” or “phase explosion” occurs when a massive number of vapor bubbles nucleate in a superheated liquid. This phenomenon is relatively common and plays a key role in numerous practical applications including the generation of nanoparticles and nanomaterials, surface cleaning, and nano/microfabrication. Despite decades of extensive experimental and theoretical studies, a clear understanding of the conditions and microscopic mechanisms of the phase explosion is still lacking. The objective of the research project is to understand the mechanisms and kinetics of the explosive phase decomposition in a metastable liquid superheated up to the limit of its thermodynamic stability. A combination of large-scale atomistic simulations with state-of-the-art, time-resolved probing of the transient dynamics of the phase explosion will be used to track all stages of the process. The dependence of the dynamics of the phase explosion on the environment, geometry of the target, and heating rate will be investigated to gain further insights into the fundamental mechanisms that would enable control over the process for practical applications. This project will unveil the fundamental mechanisms of explosive vaporization, whose quantification has long been elusive, and will foster breakthroughs in laser processing and manufacturing. Accurate and verified predictions of laser ablation dynamics will contribute to the advancement of material processing and micro/nanofabrication, as well as the generation of nanostructures with tailored size, composition, and properties.Insights into the microscopic mechanisms and kinetics of the phase explosion will be obtained through the close integration of experimental and computational studies. Simulations and experiments performed for the same material systems, confinement conditions, and laser parameters will maximize the opportunities for reliable interpretation of experimental observations and direct verification of the computational predictions. The explosive vaporization of metals and alloys in the bulk and thin film forms as well as metal nanowires will be studied under various ambient background pressure conditions and under strong confinement by capping layers. The temporal evolution of the phase explosion will be studied by pump-probe optical interrogation, time-resolved imaging, fast pyrometry and temperature measurement using ultrathin embedded sensors. Quantitative dynamic data on the transient temperature variation, optical scattering distributions, speed and internal temperature of ejected nanoparticles will be directly related to the predictions of large-scale atomistic simulations. Ex situ analysis of the surface morphology, crystallinity, and defect structures, as well as the size distribution of produced nanoparticles will also be related to the computational predictions. These studies will provide a complete multiscale picture connecting the initial explosive phase transformation to the implications for practically relevant outcomes, including surface nanostructuring and nanoparticle generation. The fundamentals of the thermal energy partitioning, transport and transformations will be analyzed through a combination of direct experimental probing, modeling of the residual heat in the irradiated targets and the thermal emission of the ablation plume.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当大量的蒸汽泡在过热液体中成核时,发生“爆炸沸腾”或“相爆炸”。 这种现象相对常见,并且在许多实际应用中起着关键作用,包括纳米颗粒和纳米材料的产生,表面清洁和纳米/微米制造。尽管几十年来进行了广泛的实验和理论研究,但仍然缺乏对相爆炸条件和微观机制的清晰理解。该研究项目的目的是了解在过热到其热力学稳定性极限的亚稳液体中爆炸相分解的机制和动力学。将大规模原子模拟与最先进的、时间分辨的相爆炸瞬态动力学探测相结合,用于跟踪该过程的所有阶段。相爆炸的动力学对环境的依赖性,目标的几何形状,和加热速率将被调查,以获得进一步的见解的基本机制,这将使控制过程中的实际应用。该项目将揭示爆炸汽化的基本机制,其量化长期以来一直难以捉摸,并将促进激光加工和制造的突破。准确和验证的激光烧蚀动力学预测将有助于材料加工和微/纳米fabries.Insights到相爆炸的微观机制和动力学的实验和计算研究的紧密结合,将获得与定制的尺寸,成分和properties的纳米结构的生成的进步。针对相同的材料系统、约束条件和激光参数进行的模拟和实验将最大限度地提高对实验观测结果的可靠解释和对计算预测的直接验证的机会。爆炸性蒸发的金属和合金的散装和薄膜形式,以及金属纳米线将在各种环境背景压力条件下,并在强大的限制帽层进行研究。相位爆炸的时间演化将通过泵浦-探测光学询问、时间分辨成像、快速高温测量和使用嵌入式传感器的温度测量来研究。瞬态温度变化,光学散射分布,喷射纳米粒子的速度和内部温度的定量动态数据将直接关系到大规模原子模拟的预测。非原位分析的表面形态,结晶度,和缺陷结构,以及所产生的纳米粒子的尺寸分布也将与计算预测。 这些研究将提供一个完整的多尺度图片连接初始爆炸相变的影响,实际相关的成果,包括表面纳米结构和纳米粒子的产生。热能分配、传输和转换的基本原理将通过直接实验探测、辐照目标中的余热建模和烧蚀羽流的热排放相结合进行分析。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atomistic modeling of pulsed laser ablation in liquid: spatially and time-resolved maps of transient nonequilibrium states and channels of nanoparticle formation
- DOI:10.1007/s00339-023-06525-0
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Chaobo Chen;L. Zhigilei
- 通讯作者:Chaobo Chen;L. Zhigilei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Zhigilei其他文献
Leonid Zhigilei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Zhigilei', 18)}}的其他基金
EAGER: IMPRESS-U: Gradient surface nanostructuring with short laser pulses
EAGER:IMPRESS-U:使用短激光脉冲进行梯度表面纳米结构
- 批准号:
2406599 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Participant Support for 7th International Conference on Advanced Nanoparticle Generation and Excitation by Lasers in Liquids (ANGEL); Charlottesville, Virginia; 26-31 May 2024
第七届液体中激光产生和激发高级纳米粒子国际会议 (ANGEL) 的与会者支持;
- 批准号:
2348099 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
NSF-DFG: Nonequilibrium Thermal Processing of Nanoparticles via Laser Melting and Fragmentation in Liquid
NSF-DFG:通过激光熔化和液体破碎对纳米颗粒进行非平衡热处理
- 批准号:
2302577 - 财政年份:2023
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Atomistic Modeling of the Generation of Metastable Nanoparticles and Surface Structures in Pulsed Laser Ablation in Liquids
液体中脉冲激光烧蚀中亚稳态纳米粒子和表面结构生成的原子建模
- 批准号:
1663429 - 财政年份:2017
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: Ultrafast Laser-Driven Phase Transitions in Nanoparticles near their Melting
合作研究:纳米颗粒熔化附近的超快激光驱动相变
- 批准号:
1708486 - 财政年份:2017
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Atomistic Simulations of Acoustic Activation of Surface Processes
表面过程声激活的原子模拟
- 批准号:
1562929 - 财政年份:2016
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Multiscale Modeling of Laser-Induced Surface Nanostructuring of Metals
激光诱导金属表面纳米结构的多尺度建模
- 批准号:
1610936 - 财政年份:2016
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Mechanisms of Nanoparticle Generation by Laser Ablation of Thin Films in Liquids
液体中激光烧蚀薄膜产生纳米粒子的机制
- 批准号:
1301298 - 财政年份:2013
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Computational study of thermal transport in carbon nanotube based nanocomposites
碳纳米管基纳米复合材料热传输的计算研究
- 批准号:
1033919 - 财政年份:2010
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Computational Study of the Generation of Crystal Defects and Controlled Modification of Surface Microstructure by Short Pulse Laser Irradiation
短脉冲激光辐照晶体缺陷产生及表面微结构可控改性的计算研究
- 批准号:
0907247 - 财政年份:2009
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Microscopic Mechanism of Surface Oxide Formation in Multi-Principal Element Alloys
合作研究:多主元合金表面氧化物形成的微观机制
- 批准号:
2219489 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: Microscopic Mechanism of Surface Oxide Formation in Multi-Principal Element Alloys
合作研究:多主元合金表面氧化物形成的微观机制
- 批准号:
2219416 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Collaborative Research: Two-way Coupled Fluid/Particulate Transport in Fractured Media - Bridging the Scales from Microscopic Origins to Macroscopic Networks
合作研究:断裂介质中的双向耦合流体/颗粒传输 - 连接从微观起源到宏观网络的尺度
- 批准号:
2100691 - 财政年份:2021
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: Microscopic mechanisms and kinetics of laser-induced phase explosion
合作研究:激光诱导相爆炸的微观机制和动力学
- 批准号:
2126682 - 财政年份:2021
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: Two-way Coupled Fluid/Particulate Transport in Fractured Media - Bridging the Scales from Microscopic Origins to Macroscopic Networks
合作研究:断裂介质中的双向耦合流体/颗粒传输 - 连接从微观起源到宏观网络的尺度
- 批准号:
2100493 - 财政年份:2021
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: High-resolution electrochemical and Correlated microscopic characterization of 2D electrocatalysts
合作研究:二维电催化剂的高分辨率电化学和相关微观表征
- 批准号:
1900463 - 财政年份:2019
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: Discontinuous Shear Thickening and Shear Jamming in Dense Suspensions: Statistical Mechanics and the Microscopic Basis for Extreme Transitions of Properties
合作研究:稠密悬浮液中的不连续剪切增稠和剪切堵塞:统计力学和性能极端转变的微观基础
- 批准号:
1916879 - 财政年份:2019
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: Discontinuous shear thickening and shear jamming in dense suspensions: statistical mechanics and the microscopic basis for extreme transitions of properties
合作研究:稠密悬浮液中的不连续剪切增稠和剪切干扰:统计力学和性能极端转变的微观基础
- 批准号:
1916877 - 财政年份:2019
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative Research: High-resolution electrochemical and Correlated microscopic characterization of 2D electrocatalysts
合作研究:二维电催化剂的高分辨率电化学和相关微观表征
- 批准号:
1900401 - 财政年份:2019
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
Collaborative research: Microscopic fracturing and macroscopic weakening: A novel model for bedrock fracturing by biotite weathering
合作研究:微观破裂和宏观弱化:黑云母风化基岩破裂的新模型
- 批准号:
1934458 - 财政年份:2019
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant