Collaborative Research: Probing Reconfigurable Nanoparticle Biointerfaces using Catalysis
合作研究:利用催化探测可重构纳米粒子生物界面
基本信息
- 批准号:1903576
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Professor Marc Knecht of the University of Miami and Professor Anatoly I. Frenkel of SUNY at Stony Brook are supported by the Macromolecular, Supramolecular and Nanochemistry (MSN) Program of the Division of Chemistry to develop biomolecule-bonded nanoparticles for unique applications in catalysis. Nanoparticles are incredibly small-sized materials that are 1000 times smaller than the width of one strand of human hair. To prevent these particles from uncontrollably aggregating to larger structures, small molecules are chemically bound to the particle surface. These molecules, also called ligands, keep the nanoparticles stably suspended in solution, allowing for studies of the material properties for wide ranging applications from harvesting solar energy to chemical catalysis. While these ligands are incredibly important, they are typically locked in a single conformation, thus limiting the properties of a nanoparticle. In this project, Professors Knecht and Frenkel are using biological inspiration and molecular design to develop biological ligands that can change their structure when irradiated with light of a certain wavelength or color. When these biomolecules are used to stabilize metal nanoparticles, they can change their arrangement when bound to the material, thus accessing two different conformations and enhancing the potential properties of a single material. These conformation differences and the changes to the material properties are being studied using catalysis and advanced spectroscopy methods, providing great detail to aid in material design. Professors Knecht and Frenkel are also engaging undergraduate students with the integration of this research with education at the entry level to encourage students into science related studies and careers. In addition, plans are implemented to realign the Freshman and Sophomore general and organic courses and laboratories to improve the chemistry undergraduate students' retention ratio. Colloidal metal nanoparticles are typically constructed using surface passivating ligands that are rigidly bound to the inorganic surface, locking them into a single configuration. By having the ability to remotely actuate the interfacial structure on the particle surface to adopt different conformations, the properties of the materials could be tuned on demand. Professors Knecht and Frenkel hypothesize that peptide-based nanoparticle passivants can be remotely and reversibly reconfigured via external stimuli to adopt two different configurations for on demand material property control. Such capabilities are achievable through the integration of a photoswitch into the peptide structure. Changes in the photoswitch isomerization state can be propagated through the peptide conformation due to the binding between the biomolecule and the nanoparticle surface. This capability is being examined using catalysis as a surface probe of the ligand structural conformation, where differences in reaction rates are observable. These differences are being exploited to achieve on/off catalytic reactivity, which could be important for multistep reactions. Furthermore, as part of this study, advanced, in situ and operando X-ray spectroscopic analysis of the nanoparticles are being used to identify changes in particle surface structure as a function of ligand conformation before, during, and after photoswitching and catalysis. Finally, the effects of the nanoparticle composition, size, and shape are being studied to modulate the level of photoswitch-based peptide structural differences for enhanced control over the particle catalytic properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
迈阿密大学的马克·奈赫特教授和纽约州立大学石溪分校的阿纳托利·I·弗伦克尔教授得到了化学系大分子、超分子和纳米化学(MSN)计划的支持,以开发生物分子键合纳米颗粒,用于催化领域的独特应用。纳米粒子是令人难以置信的小材料,比人类一根头发的宽度小1000倍。为了防止这些颗粒无法控制地聚集到更大的结构上,小分子被化学结合到颗粒表面。这些分子也被称为配体,使纳米颗粒稳定地悬浮在溶液中,使其能够研究从收集太阳能到化学催化等广泛应用的材料性质。虽然这些配体非常重要,但它们通常被锁定在单一构象中,从而限制了纳米颗粒的性质。在这个项目中,克奈特教授和弗伦克尔教授正在利用生物灵感和分子设计来开发生物配体,当受到特定波长或颜色的光照射时,这种生物配体可以改变其结构。当这些生物分子被用来稳定金属纳米颗粒时,它们可以在结合到材料上时改变它们的排列,从而获得两种不同的构象,并增强单一材料的潜在性质。这些构象差异和材料性能的变化正在使用催化和先进的光谱方法进行研究,为材料设计提供了非常详细的信息。克奈特教授和弗伦克尔教授还鼓励本科生将这项研究与入门教育相结合,以鼓励学生从事与科学相关的研究和职业。此外,还计划重新安排一、二年级的普通和有机课程和实验室,以提高化学本科生的保留率。胶体金属纳米颗粒通常是使用表面钝化配体构建的,这些配体刚性地结合到无机表面,将它们锁定在单一构型中。通过远程驱动颗粒表面的界面结构以采用不同的构象,材料的性能可以根据需要进行调整。奈克特和弗伦克尔教授假设,基于多肽的纳米颗粒钝化剂可以通过外部刺激进行远程和可逆的重新配置,以采用两种不同的配置来按需控制材料性能。这种能力可以通过将光开关整合到多肽结构中来实现。由于生物分子与纳米颗粒表面的结合,光开关异构化状态的变化可以通过多肽构象传播。这种能力正在使用催化作为配体结构构象的表面探针来检验,其中反应速率的差异是可观察到的。这些差异正在被利用来实现开/关催化反应,这对多步反应可能是重要的。此外,作为这项研究的一部分,对纳米颗粒进行了先进的、原位的和操作的X射线光谱分析,以确定在光切换和催化之前、期间和之后颗粒表面结构作为配体构象的函数的变化。最后,正在研究纳米颗粒组成、大小和形状的影响,以调节基于光开关的多肽结构差异的水平,以增强对颗粒催化性能的控制。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Z-Contrast Enhancement in Au–Pt Nanocatalysts by Correlative X-ray Absorption Spectroscopy and Electron Microscopy: Implications for Composition Determination
- DOI:10.1021/acsanm.2c00393
- 发表时间:2022-06
- 期刊:
- 影响因子:5.9
- 作者:Yang Liu;Maichong Xie;Nicholas Marcella;Alexandre C. Foucher;E. Stach;Marc R. Knecht;A. Frenkel
- 通讯作者:Yang Liu;Maichong Xie;Nicholas Marcella;Alexandre C. Foucher;E. Stach;Marc R. Knecht;A. Frenkel
Remote controlled optical manipulation of bimetallic nanoparticle catalysts using peptides
- DOI:10.1039/d1cy00189b
- 发表时间:2021-04
- 期刊:
- 影响因子:5
- 作者:Randy L. Lawrence;M. Olagunju;Yang Liu;K. Mahalingam;J. Slocik;R. Naik;A. Frenkel;Marc R. Knecht
- 通讯作者:Randy L. Lawrence;M. Olagunju;Yang Liu;K. Mahalingam;J. Slocik;R. Naik;A. Frenkel;Marc R. Knecht
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anatoly Frenkel其他文献
Anatoly Frenkel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anatoly Frenkel', 18)}}的其他基金
NSF-BSF: Electrostriction in Ceramic Materials with Dynamic Elastic Dipoles
NSF-BSF:具有动态弹性偶极子的陶瓷材料中的电致伸缩
- 批准号:
2312690 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Designing Functional Bioligand Interfaces for Multifunctional Nanomaterials
合作研究:设计多功能纳米材料的功能生物配体界面
- 批准号:
2203858 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Solar CO2 Reduction by Atomically Dispersed Metal Sites on Few-Layer Carbon Nitride
CAS:合作研究:通过少层氮化碳上的原子分散金属位点减少太阳能二氧化碳
- 批准号:
2102299 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
NSF/DMR-BSF: Understanding Electro-Chemo-Mechanical Processes at the Atomic Level
NSF/DMR-BSF:了解原子水平上的电化学机械过程
- 批准号:
1911592 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
International Collaboration in Chemistry: Doping of Colloidal Semiconductor Nanocrystals: Synthesis, Diffusion Mechanisms, Structure and Optoelectronic Properties
国际化学合作:胶体半导体纳米晶体的掺杂:合成、扩散机制、结构和光电性能
- 批准号:
1719534 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
NSF/DMR-BSF: Origin of Large Electromechanical Response in Non-Classical Electrostrictors
NSF/DMR-BSF:非经典电致伸缩器大机电响应的起源
- 批准号:
1606840 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Toolkit to Characterize and Design Bi-functional Nanoparticle Catalysts
DMREF:协作研究:表征和设计双功能纳米粒子催化剂的工具包
- 批准号:
1726321 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
NSF/DMR-BSF: Origin of Large Electromechanical Response in Non-Classical Electrostrictors
NSF/DMR-BSF:非经典电致伸缩器大机电响应的起源
- 批准号:
1701747 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Toolkit to Characterize and Design Bi-functional Nanoparticle Catalysts
DMREF:协作研究:表征和设计双功能纳米粒子催化剂的工具包
- 批准号:
1534184 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
International Collaboration in Chemistry: Doping of Colloidal Semiconductor Nanocrystals: Synthesis, Diffusion Mechanisms, Structure and Optoelectronic Properties
国际化学合作:胶体半导体纳米晶体的掺杂:合成、扩散机制、结构和光电性能
- 批准号:
1413937 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412550 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
- 批准号:
2230729 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: PM: High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309273 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323023 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319142 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323022 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319144 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: RUI: PM:High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:RUI:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309274 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
- 批准号:
2230891 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant