Engineering a Neural Tissue Model of Oligodendroglial and Matrix Remodeling after Biophysical Injury

构建生物物理损伤后少突胶质细胞和基质重塑的神经组织模型

基本信息

  • 批准号:
    1904198
  • 负责人:
  • 金额:
    $ 54.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Cells in the brain reside in a three-dimensional matrix that regulates their fate and function. These include neurons, which quickly send signals up and down their long axons, and oligodendrocytes, which deposit an insulating sheath, called myelin, on the axons. This myelin is analogous to insulation on a wire, and thus essential for proper function. Injuries to the brain from mechanical forces, like blast injury, damage brain cells and frequently lead to loss of myelin along with death of oligodendrocytes and neurons. In order to develop ways to repair this damage, it is first necessary to understand the mechanisms connected to myelin creation and destruction (myelination and demyelination, respectively). As oligodendrocytes neither simply appear in the brain nor remain there without changing, it is also important to understand how progenitor cells (earlier, undifferentiated cells) become mature oligodendrocytes. This project's primary goals are to create a tunable, 3D environment that will support oligodendrocyte progenitor cell (OPC) growth, axon growth, and production of myelin, and then to understand the degenerative process after mechanical injury to the engineered tissue. The 3D environment will include important aspects of the cell-cell and cell-matrix environment that are not present in traditional 2D culture. The outreach and education objectives planned through this project will significantly expand interest in the role of engineering in health fields to broadly diverse elementary school children and provide means for socioeconomically challenged students to pursue STEM related fields through paid college research opportunities. The PIs will continue to mentor underrepresented undergraduate students, particularly women, in their research groups. Finally, the PI will create a new opportunity to facilitate graduate student:faculty communication and career mentoringThis project includes three research aims. The first is to determine the mechanism through which the mechanical properties of the culture matrix will support differentiation of precursor cells into mature oligodendrocytes, and then to optimize this system. This will take into account differentiation of neural stem cells to OPCs as well as differentiation of OPCs to mature, myelin producing oligodendrocytes. The second aim will focus on structural cues in 3D culture to support myelin production by the oligodendrocytes, which is not observed in 2D culture. Finally, the optimized system with differentiated oligodendrocytes will be exposed to pressure blast waves through a controllable blast chamber. Multiscale measurements of mechanical parameters that characterize the cell responsivity threshold as well as mechanotransduction mechanisms and phenotypic changes will be assessed. This will be done with both 2D and 3D culture to identify the effect of differences in the cellular environment on the demyelination process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大脑中的细胞存在于一个三维矩阵中,该矩阵调节它们的命运和功能。这些细胞包括神经元和少突胶质细胞,神经元能快速地将信号上下传递到它们的长轴突上,少突胶质细胞在轴突上存款一层绝缘鞘,称为髓鞘。这种髓磷脂类似于电线上的绝缘层,因此对正常功能至关重要。机械力对脑的损伤,如爆炸损伤,会损伤脑细胞,并经常导致髓鞘沿着少突胶质细胞和神经元的死亡。为了开发修复这种损伤的方法,首先需要了解与髓鞘生成和破坏(分别为髓鞘形成和脱髓鞘)相关的机制。由于少突胶质细胞既不是简单地出现在大脑中,也不是保持不变,因此了解祖细胞(早期未分化的细胞)如何成为成熟的少突胶质细胞也很重要。该项目的主要目标是创建一个可调的3D环境,支持少突胶质细胞祖细胞(OPC)生长,轴突生长和髓鞘的产生,然后了解工程组织机械损伤后的退行性过程。 3D环境将包括传统2D培养中不存在的细胞-细胞和细胞-基质环境的重要方面。 通过该项目计划的推广和教育目标将大大扩大对工程在健康领域的作用的兴趣,以广泛多样的小学生,并为社会经济上有困难的学生提供通过付费大学研究机会追求STEM相关领域的手段。PI将继续在其研究小组中指导代表性不足的本科生,特别是女性。最后,本研究将创造一个新的机会,以促进研究生:教师沟通和职业指导。 首先是确定培养基质的机械性质将支持前体细胞分化为成熟少突胶质细胞的机制,然后优化该系统。 这将考虑神经干细胞向OPC的分化以及OPC向成熟的、产生髓鞘的少突胶质细胞的分化。 第二个目标将集中在3D培养中的结构线索,以支持少突胶质细胞产生髓鞘,这在2D培养中没有观察到。 最后,具有分化的少突胶质细胞的优化系统将通过可控爆炸室暴露于压力爆炸波。 将评估表征细胞响应阈值以及机械转导机制和表型变化的机械参数的多尺度测量。 这将通过二维和三维培养来完成,以确定细胞环境差异对脱髓鞘过程的影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The need for tissue-engineered models to facilitate the study of oligodendrocyte progenitor cells in traumatic brain injury and repair
需要组织工程模型来促进少突胶质细胞祖细胞在创伤性脑损伤和修复中的研究
  • DOI:
    10.1016/j.cobme.2022.100378
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Mazur, Rachel A.;Yokosawa, Ryosuke;VandeVord, Pamela J.;Lampe, Kyle J.
  • 通讯作者:
    Lampe, Kyle J.
3D Hyaluronic Acid Hydrogels for Modeling Oligodendrocyte Progenitor Cell Behavior as a Function of Matrix Stiffness
3D 透明质酸水凝胶用于模拟少突胶质细胞祖细胞行为与基质硬度的函数关系
  • DOI:
    10.1021/acs.biomac.0c01164
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Unal, Deniz B.;Caliari, Steven R.;Lampe, Kyle J.
  • 通讯作者:
    Lampe, Kyle J.
Guiding Oligodendrocyte Precursor Cell Maturation With Urokinase Plasminogen Activator-Degradable Elastin-like Protein Hydrogels
  • DOI:
    10.1021/acs.biomac.0c00828
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Meco, Edi;Zheng, W. Sharon;Lampe, Kyle J.
  • 通讯作者:
    Lampe, Kyle J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kyle Lampe其他文献

Kyle Lampe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kyle Lampe', 18)}}的其他基金

Engineering the design of self-assembling, shear-thinning pentapeptide hydrogels to promote neural cell growth and differentiation
自组装、剪切稀化五肽水凝胶的工程设计可促进神经细胞生长和分化
  • 批准号:
    2104723
  • 财政年份:
    2021
  • 资助金额:
    $ 54.02万
  • 项目类别:
    Continuing Grant

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Engineering neural tissue using pluripotent stem cells
使用多能干细胞改造神经组织
  • 批准号:
    RGPIN-2017-04044
  • 财政年份:
    2022
  • 资助金额:
    $ 54.02万
  • 项目类别:
    Discovery Grants Program - Individual
Engineering neural tissue using pluripotent stem cells
使用多能干细胞改造神经组织
  • 批准号:
    RGPIN-2017-04044
  • 财政年份:
    2021
  • 资助金额:
    $ 54.02万
  • 项目类别:
    Discovery Grants Program - Individual
Engineering neural tissue using pluripotent stem cells
使用多能干细胞改造神经组织
  • 批准号:
    RGPIN-2017-04044
  • 财政年份:
    2020
  • 资助金额:
    $ 54.02万
  • 项目类别:
    Discovery Grants Program - Individual
Stem cell-based neural tissue engineering through the use of biomaterials.
通过使用生物材料进行基于干细胞的神经组织工程。
  • 批准号:
    2302243
  • 财政年份:
    2019
  • 资助金额:
    $ 54.02万
  • 项目类别:
    Studentship
Engineering neural tissue using pluripotent stem cells
使用多能干细胞改造神经组织
  • 批准号:
    RGPIN-2017-04044
  • 财政年份:
    2019
  • 资助金额:
    $ 54.02万
  • 项目类别:
    Discovery Grants Program - Individual
Engineering neural tissue using pluripotent stem cells
使用多能干细胞改造神经组织
  • 批准号:
    RGPIN-2017-04044
  • 财政年份:
    2018
  • 资助金额:
    $ 54.02万
  • 项目类别:
    Discovery Grants Program - Individual
Smart Biomaterials for neural tissue engineering applications
用于神经组织工程应用的智能生物材料
  • 批准号:
    1949117
  • 财政年份:
    2017
  • 资助金额:
    $ 54.02万
  • 项目类别:
    Studentship
Engineering neural tissue using pluripotent stem cells
使用多能干细胞改造神经组织
  • 批准号:
    RGPIN-2017-04044
  • 财政年份:
    2017
  • 资助金额:
    $ 54.02万
  • 项目类别:
    Discovery Grants Program - Individual
Microsphere-based drug delivery systems for neural tissue engineering
用于神经组织工程的微球药物递送系统
  • 批准号:
    481339-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 54.02万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Engineering neural tissue from stem cells
用干细胞工程化神经组织
  • 批准号:
    491089-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 54.02万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了