Investigation of (Photo) Electrocatalytic Conversion of N2 to NH3 under Ambient Conditions Using Hybrid Hollow Plasmonic Nanostructures
使用混合中空等离子体纳米结构研究环境条件下 N2 电催化转化为 NH3
基本信息
- 批准号:1904351
- 负责人:
- 金额:$ 43.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ammonia is one of the widely produced chemicals in the world. It is used in agricultural fertilizer, energy, and in the pharmaceutical industry. The current method for producing ammonia involves heating the reactants to very high temperatures and at high pressures, which requires large amounts of energy. With support from the Macromolecular, Supramolecular, and Nanochemistry Program in the Division of Chemistry, Professor Mostafa El-Sayed at the Georgia Institute of Technology and his students are exploring a photo-electrochemical approach that would produce ammonia from nitrogen and water at atmospheric pressure and room temperature. Their approach makes use of hybrid nanoparticles that are 10,000 times smaller than a grain of salt. Each particle consists of a plasmonic nanoparticle, surrounded by a semiconductor shell and catalytic metal. Exposure to light excites the electrons in the nanoparticle. These electrons are then transferred to the semiconductor and the catalyst, where the chemical conversion to ammonia occurs. The team's discoveries could extend beyond ammonia synthesis and impact the broader field of nanocatalysis, which is widely used in chemical production, sustainable energy, and materials chemistry. The project is training the next generation of scientists and is engaging students at historically black colleges and universities (HBCUs) in the Atlanta metropolitan area. Professor El-Sayed and his group also showcase their research through lab tours and public presentations at STEM career fairs and local schools. Various metal (e.g., Au, Pd, and Ru) nanocages, hybrid double shell (e.g., Ag-Au, Au-Pd, Au-Ru) nanocages, and Au nanorattles where a solid Au plasmonic nanoparticle is placed inside the hollow nanocatalyst are synthesized. The conversion of nitrogen (N2) to ammonia (NH3) under ambient conditions is then explored using these nanocatalysts in a (photo) electrochemical system, which measures the reaction rate and catalytic efficiency. In-situ surface-enhanced Raman spectroscopy and atomic force microscopy are performed to study the full reaction mechanism during electrochemical nitrogen reduction reaction. Transition catalytic metals (e.g., Ru, Pd) are utilized as dopants, co-catalysts, and plasmon enhancers with semiconductor and plasmonic metals (Au) to study their effects on the charge carrier recombination and the dynamics of electron injection using ultrafast pump-probe spectroscopy. These experiments help to design an active photo-electrocatalyst with longer recombination time, therefore facilitating the photo-electrochemical nitrogen reduction reaction. The group's extensive experience in nanoparticle synthesis, bench scale photo-electrochemical testing and state of the art spectroscopy is complemented by theoretical studies to gain a fundamental understanding of photo-electrochemical nitrogen fixation processes that enable nitrogen-based fertilizer production.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
氨是世界上广泛生产的化学品之一。它用于农业肥料、能源和制药工业。目前生产氨的方法涉及将反应物加热到非常高的温度和高压,这需要大量的能量。 在化学系大分子,超分子和纳米化学项目的支持下,格鲁吉亚理工学院的Mostafa El-Sayed教授和他的学生正在探索一种光电化学方法,该方法将在大气压和室温下从氮气和水中产生氨。他们的方法利用了比盐粒小10,000倍的混合纳米颗粒。每个粒子由等离子体纳米粒子组成,由半导体壳和催化金属包围。暴露于光激发纳米颗粒中的电子。 这些电子然后被转移到半导体和催化剂,在那里发生化学转化为氨。 该团队的发现可能超出氨合成的范围,并影响更广泛的纳米催化领域,纳米催化广泛应用于化学生产、可持续能源和材料化学。该项目正在培训下一代科学家,并吸引亚特兰大大都市区历史悠久的黑人学院和大学(HBCU)的学生。El-Sayed教授和他的团队还通过实验室图尔斯之旅和在STEM招聘会和当地学校的公开演讲来展示他们的研究。各种金属(例如,Au、Pd和Ru)纳米笼、混合双壳层(例如,Ag-Au、Au-Pd、Au-Ru)纳米笼和其中固体Au等离子体纳米颗粒置于中空纳米催化剂内部的Au纳米晶格。然后在环境条件下使用这些纳米催化剂在(光)电化学系统中探索氮(N2)向氨(NH3)的转化,该系统测量反应速率和催化效率。利用原位表面增强拉曼光谱和原子力显微镜研究了电化学氮还原反应的全过程。过渡催化金属(例如,Ru、Pd)作为掺杂剂、助催化剂和等离子体增强剂与半导体和等离子体金属(Au)一起使用,以使用超快泵浦-探测光谱研究它们对电荷载流子复合和电子注入动力学的影响。这些实验有助于设计具有较长复合时间的活性光电催化剂,从而促进光电化学氮还原反应。该小组在纳米颗粒合成方面的丰富经验,实验室规模的光电化学测试和最先进的光谱学是由理论研究补充,以获得光电化学固氮过程的基本理解,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanistic understanding of electrochemical nitrogen reduction reaction on hybrid plasmonic nanostructures using operando surface-enhanced Raman spectroscopy
使用操作表面增强拉曼光谱了解混合等离子体纳米结构上电化学氮还原反应的机理
- DOI:10.1021/scimeetings.1c00710
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Nazemi, Mohammadreza;El-Sayed, Mostafa
- 通讯作者:El-Sayed, Mostafa
Photoelectrochemical Nitrogen Fixation for Ammonia Synthesis Using Hybrid Plasmonic Nanostructures
利用混合等离子体纳米结构光电化学固氮合成氨
- DOI:10.1149/ma2020-02613101mtgabs
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Nazemi, Mohammadreza;El-Sayed, Mostafa
- 通讯作者:El-Sayed, Mostafa
Photo-Electrochemical Ammonia Synthesis: Nanocatalyst Discovery, Reactor Design, and Advanced Spectroscopy
光电化学氨合成:纳米催化剂发现、反应器设计和先进光谱学
- DOI:10.1201/9781003141808
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Nazemi, Mohammadreza;El-Sayed, Mostafa A.
- 通讯作者:El-Sayed, Mostafa A.
Ambient Ammonia Electrosynthesis from Nitrogen and Water by Incorporating Palladium in Bimetallic Gold–Silver Nanocages
- DOI:10.1149/1945-7111/ab6ee9
- 发表时间:2020-02
- 期刊:
- 影响因子:3.9
- 作者:M. Nazemi;Luke Soule;Meilin Liu;M. El-Sayed
- 通讯作者:M. Nazemi;Luke Soule;Meilin Liu;M. El-Sayed
Plasmon-enhanced photo(electro)chemical nitrogen fixation under ambient conditions using visible light responsive hybrid hollow Au-Ag2O nanocages
- DOI:10.1016/j.nanoen.2019.103886
- 发表时间:2019-09-01
- 期刊:
- 影响因子:17.6
- 作者:Nazemi, Mohammadreza;El-Sayed, Mostafa A.
- 通讯作者:El-Sayed, Mostafa A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Orlando其他文献
Electron stimulated desorption of O<sub>2</sub><sup>+</sup> from gadolinia-doped ceria surfaces
- DOI:
10.1016/j.apsusc.2008.01.146 - 发表时间:
2008-06-15 - 期刊:
- 影响因子:
- 作者:
Haiyan Chen;Alex Aleksandrov;Meilin Liu;Thomas Orlando - 通讯作者:
Thomas Orlando
Thomas Orlando的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Orlando', 18)}}的其他基金
12th International Conference on Desorption Induced by Electronic Transitions (DIET XII); Spring 2009, Pine Mountain, GA
第十二届电子跃迁引起的解吸国际会议(DIET XII);
- 批准号:
0929980 - 财政年份:2009
- 资助金额:
$ 43.03万 - 项目类别:
Standard Grant
Purchase of a Computer Cluster for Computational Molecular and Materials Chemistry
购买用于计算分子和材料化学的计算机集群
- 批准号:
0443564 - 财政年份:2005
- 资助金额:
$ 43.03万 - 项目类别:
Standard Grant
Acquisition of a Dual Beam FIB/SEM Instrument
购置双光束 FIB/SEM 仪器
- 批准号:
0343028 - 财政年份:2004
- 资助金额:
$ 43.03万 - 项目类别:
Standard Grant
相似国自然基金
中空铁酸盐/石墨炔多维可见光催化剂的制备及photo-Fenton应用研究
- 批准号:52062025
- 批准年份:2020
- 资助金额:36 万元
- 项目类别:地区科学基金项目
Photo-PISA制备毛发状手性杂化纳米粒及其应用
- 批准号:51703120
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
可见光或太阳光照射的Photo-Fenton反应降解染料污染物的研究
- 批准号:29877026
- 批准年份:1998
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Photo-induced Ultrafast Electron-nuclear Dynamics in Molecules
职业:分子中光致超快电子核动力学
- 批准号:
2340570 - 财政年份:2024
- 资助金额:
$ 43.03万 - 项目类别:
Continuing Grant
Lead-free Perovskite Nanowires for Artificial Photo-synapse Arrays
用于人工光突触阵列的无铅钙钛矿纳米线
- 批准号:
DE240100179 - 财政年份:2024
- 资助金额:
$ 43.03万 - 项目类别:
Discovery Early Career Researcher Award
2DSPEC - Simulating two-dimensional electronic spectroscopy: Capturing the complexities of photo-induced excitedstate molecular processes
2DSPEC - 模拟二维电子光谱:捕获光诱导激发态分子过程的复杂性
- 批准号:
EP/Y037383/1 - 财政年份:2024
- 资助金额:
$ 43.03万 - 项目类别:
Fellowship
CAREER: Understanding Photo-thermoelectric Phenomena in Bulk and Nanomaterials for Better Optical Sensing
职业:了解块状和纳米材料中的光热电现象以实现更好的光学传感
- 批准号:
2340728 - 财政年份:2024
- 资助金额:
$ 43.03万 - 项目类别:
Continuing Grant
Sus-Flow: Accelerating Sustainable Continuous Medicine Manufacture via Photo-, Electro-and Thermo-chemistry with Next-Generation Reactors
Sus-Flow:利用下一代反应器通过光化学、电化学和热化学加速可持续连续药物制造
- 批准号:
EP/Z53299X/1 - 财政年份:2024
- 资助金额:
$ 43.03万 - 项目类别:
Research Grant
Photo-responsive block copolymer that apply reversible mechanical stress to cells
向细胞施加可逆机械应力的光响应嵌段共聚物
- 批准号:
23H02030 - 财政年份:2023
- 资助金额:
$ 43.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Photo-thermal ammonia decomposition
光热氨分解
- 批准号:
DE230100789 - 财政年份:2023
- 资助金额:
$ 43.03万 - 项目类别:
Discovery Early Career Researcher Award
Realization of photo-responsive CO2 concentration systems by using polar gradient-reaction fields afforded by surfactants and photochromic molecules
利用表面活性剂和光致变色分子提供的极性梯度反应场实现光响应二氧化碳浓度系统
- 批准号:
23K13828 - 财政年份:2023
- 资助金额:
$ 43.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Rapid manufacturing and hierarchical structure control of porous ceramics using interparticle photo-cross-linkable emulsified slurries
使用颗粒间光交联乳化浆料快速制造多孔陶瓷并控制分层结构
- 批准号:
23KJ0984 - 财政年份:2023
- 资助金额:
$ 43.03万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Carbon sequestration and sustainable product manufacture by algae using a novel photo-bioreactor
使用新型光生物反应器通过藻类进行碳封存和可持续产品制造
- 批准号:
2831630 - 财政年份:2023
- 资助金额:
$ 43.03万 - 项目类别:
Studentship