Conductivity in Nanostructured Precise Polymers
纳米结构精密聚合物的电导率
基本信息
- 批准号:1904767
- 负责人:
- 金额:$ 62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYBatteries, particularly those for portable electronic devices, can contain flammable liquids, such that when a battery is damaged a fire can ensue. To mitigate this safety risk, batteries include additional housing and safety features, and while this improves safety during operation, this strategy also increase the size and weight of the battery. An alternative strategy is to replace the flammable liquid with a plastic membrane that allows ions, such as lithium, to pass through without allowing electrons to pass. Prof. Winey's group has been studying single-ion conducting polymers that could be valuable for battery applications and for other membrane applications. In previous NSF-funded work they have uncovered a variety of new nanoscale structures that arise when the active chemical groups are evenly placed along a linear polymer molecule. One of these nanoscale structures, an alternating layered arrangement of ions and crystalline polymer, was recently found to have exceptional proton transport properties when hydrated. To capitalize on this finding, the PI has established new design rules for polymer membranes and built multiple collaborations with synthetic chemists who are incorporating these design concepts into new polymers. Winey's group will explore the nanoscale structures and conductivities of these newly designed polymers as a function of their polymer chemistry and processing to refine and extend their design rules for single-ion conducting polymer membranes. Given the current societal challenges related to clean water, energy storage and energy conversion, the fundamental understanding afforded by this project will have an important societal impact. PART 2: TECHNICAL SUMMARYA strong interest in ionomers and other polymers with acid, ionic and polar groups is fueled by their potential ability to selectively transport charged species, which is relevant to batteries, water purification technologies, and fuel cells. The prevailing research directions in the field of solid polymer electrolytes have consolidated around two general classes of homogeneous materials wherein the ions are uniformly distributed throughout the material: polymers mixed with salts and single-ion conductors. The ubiquitous design strategy in these materials systems is based on the understanding that ion conductivity is associated with chain dynamics and ions must be dissociated from their counterion. Unfortunately, these approaches have only limited success in developing suitable polymer-based electrolytes. Winey's group is exploring an alternative hypothesis, namely that efficient ion conductivity in polymers can be broadly achieved when the ions are sequestered into spatially-continuous nanoscale aggregates and the ions dissociate from their counterions. This project builds upon a promising result from the PI and collaborators wherein proton conductivity of a hydrated precise polyethylene with sulfonic acid groups on exactly every 21st carbon is somewhat higher than a commercial membrane. This precise polyethylene self-assembled into nanoscale layers lined with the acid groups and separated by a crystalline alkyl spacer. The high proton conductivity is evidence that the conducting protons are decoupled from the motion of the much slower polymer backbones. The proposed project will expand upon this singular finding to establish the merits of the proposed alternative hypothesis. The planned research combines conductivity measurements, structural characterization, and molecular dynamics simulations to rigorously interrogate this hypothesis using new nanostructured precise polymers. The proposed alkyl polyester sulfonates and telechelic oligomers are expected to have crystalline domains that direct the assembly of layered aggregates; these layered morphologies will be aligned in thin films on interdigitated electrodes to explore the fundamentals of conductivity. Random percolated structures in precise polyethylenes with short carbon spacers will also be investigated. The PI and her group will undertake this project with a set of unfunded collaborators: Prof. Stefan Mecking (Konstanz), Prof. Justin Kennemur (Florida State University), Prof. Paul Nealey (U Chicago), Dr. Amalie Frischknecht (Sandia), and Dr. Mark Stevens (Sandia). .This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分:非技术概述电池,特别是便携式电子设备的电池,可能含有易燃液体,因此当电池损坏时,可能会发生火灾。 为了减轻这种安全风险,电池包括额外的外壳和安全功能,虽然这提高了操作期间的安全性,但这种策略也增加了电池的尺寸和重量。 另一种策略是用塑料膜代替易燃液体,这种塑料膜允许锂等离子通过,而不允许电子通过。 Winey教授的团队一直在研究单离子导电聚合物,这些聚合物可能对电池应用和其他膜应用有价值。 在之前NSF资助的研究中,他们发现了各种新的纳米级结构,这些结构是当活性化学基团均匀地沿着线性聚合物分子沿着时产生的。 这些纳米级结构之一,离子和结晶聚合物的交替分层排列,最近被发现在水合时具有特殊的质子传输特性。 为了利用这一发现,PI为聚合物膜建立了新的设计规则,并与合成化学家建立了多项合作,这些化学家正在将这些设计概念融入新的聚合物中。 Winey的团队将探索这些新设计的聚合物的纳米级结构和导电性,作为其聚合物化学和加工的函数,以改进和扩展其单离子导电聚合物膜的设计规则。 鉴于当前与清洁水、能源储存和能源转换相关的社会挑战,该项目提供的基本认识将产生重要的社会影响。第二部分:对具有酸、离子和极性基团的离聚物和其它聚合物的强烈兴趣是由于它们选择性地传输带电物质的潜在能力,这与电池、水净化技术和燃料电池有关。 固体聚合物电解质领域的主流研究方向已经围绕两大类均质材料进行了整合,其中离子均匀分布在整个材料中:与盐混合的聚合物和单离子导体。 在这些材料系统中普遍存在的设计策略是基于这样的理解,即离子导电性与链动力学相关,并且离子必须从它们的电荷中解离。 不幸的是,这些方法在开发合适的基于聚合物的电解质方面仅取得有限的成功。 Winey的团队正在探索另一种假设,即当离子被隔离成空间连续的纳米级聚集体并且离子从其抗衡离子中解离时,聚合物中的有效离子导电性可以广泛实现。该项目基于PI和合作者的一个有希望的结果,其中在每个第21个碳上具有磺酸基团的水合精确聚乙烯的质子传导率略高于商业膜。 这种精确的聚乙烯自组装成纳米级的层,层内排列着酸基,并被结晶烷基间隔物隔开。 高质子传导率证明传导质子与慢得多的聚合物主链的运动解耦。 拟议的项目将扩大这一独特的发现,以建立拟议的备择假设的优点。计划中的研究结合了电导率测量,结构表征和分子动力学模拟,使用新的纳米结构精确聚合物严格询问这一假设。 所提出的烷基聚酯磺酸盐和遥爪低聚物预期具有指导层状聚集体组装的结晶域;这些层状形态将在交叉指型电极上的薄膜中对齐,以探索导电性的基本原理。 在精确的聚乙烯与短碳间隔的无规双链结构也将进行研究。 主要研究者及其团队将与一组无资金支持的合作者开展该项目:Stefan Mecking教授(Konstanz)、Justin Kennemur教授(佛罗里达州立大学)、Paul Nealey教授(U芝加哥)、Amalie Frischknecht博士(Sandia)和Mark Stevens博士(Sandia)。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ionomers from Step-Growth Polymerization: Highly Ordered Ionic Aggregates and Ion Conduction
逐步增长聚合的离聚物:高度有序的离子聚集体和离子传导
- DOI:10.1021/acs.macromol.9b02220
- 发表时间:2020
- 期刊:
- 影响因子:5.5
- 作者:Yan, Lu;Hoang, Lauren;Winey, Karen I.
- 通讯作者:Winey, Karen I.
Percolated Ionic Aggregate Morphologies and Decoupled Ion Transport in Precise Sulfonated Polymers Synthesized by Ring-Opening Metathesis Polymerization
- DOI:10.1021/acs.macromol.0c01906
- 发表时间:2020-10-27
- 期刊:
- 影响因子:5.5
- 作者:Paren, Benjamin A.;Thurston, Bryce A.;Winey, Karen, I
- 通讯作者:Winey, Karen, I
Fluorine-Free Precise Polymer Electrolyte for Efficient Proton Transport: Experiments and Simulations
- DOI:10.1021/acs.chemmater.1c01443
- 发表时间:2021-07-27
- 期刊:
- 影响因子:8.6
- 作者:Paren, Benjamin A.;Thurston, Bryce A.;Winey, Karen, I
- 通讯作者:Winey, Karen, I
Nanoscale layers of precise ion-containing polyamides with lithiated phenyl sulfonate in the polymer backbone
聚合物主链中含有苯基磺酸锂的精密含离子聚酰胺纳米级层
- DOI:10.1039/d2py00802e
- 发表时间:2022
- 期刊:
- 影响因子:4.6
- 作者:Park, Jinseok;Easterling, Charles P.;Armstrong, Christopher C.;Huber, Dale L.;Bowman, Jared I.;Sumerlin, Brent S.;Winey, Karen I.;Taylor, Mercedes K.
- 通讯作者:Taylor, Mercedes K.
Melt polycondensation of carboxytelechelic polyethylene for the design of degradable segmented copolyester polyolefins
羧基远爪聚乙烯熔融缩聚用于设计可降解嵌段共聚酯聚烯烃
- DOI:10.1039/d2py00394e
- 发表时间:2022
- 期刊:
- 影响因子:4.6
- 作者:Arrington, Anastasia S.;Brown, James R.;Win, Max S.;Winey, Karen I.;Long, Timothy E.
- 通讯作者:Long, Timothy E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen Winey其他文献
Karen Winey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen Winey', 18)}}的其他基金
Nanoparticle Interactions and Nanoscale Transport in Polyelectrolyte Brushes
聚电解质刷中的纳米粒子相互作用和纳米级传输
- 批准号:
2034122 - 财政年份:2021
- 资助金额:
$ 62万 - 项目类别:
Standard Grant
Nanoparticle Diffusion in Complex and Dynamic Environments
复杂动态环境中的纳米粒子扩散
- 批准号:
1706014 - 财政年份:2017
- 资助金额:
$ 62万 - 项目类别:
Standard Grant
Precise Copolymers and Ionomers: Conductivity in Layered and Percolated Morphologies and Mechanical Properties
精密共聚物和离聚物:层状和渗透形态的电导率和机械性能
- 批准号:
1506726 - 财政年份:2015
- 资助金额:
$ 62万 - 项目类别:
Standard Grant
Material World Network: Dynamics in Polymer Nanocomposites Containing Hard, Soft and Mobile Nanoparticles
材料世界网络:含有硬、软和移动纳米粒子的聚合物纳米复合材料的动力学
- 批准号:
1210379 - 财政年份:2012
- 资助金额:
$ 62万 - 项目类别:
Standard Grant
Precise Acid Copolymers and Ionomers: Morphology, Dynamics and Mechanical Properties
精密酸共聚物和离聚物:形态、动力学和机械性能
- 批准号:
1103858 - 财政年份:2011
- 资助金额:
$ 62万 - 项目类别:
Continuing Grant
2010 Polymer Physics Gordon Research Conference; June 27-July 2, 2010; Hadley, MA
2010年高分子物理戈登研究会议;
- 批准号:
0964296 - 财政年份:2010
- 资助金额:
$ 62万 - 项目类别:
Standard Grant
Materials World Network: Polymers Dynamics in the Presence of Nanoparticles
材料世界网络:纳米粒子存在下的聚合物动力学
- 批准号:
0908449 - 财政年份:2009
- 资助金额:
$ 62万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Scanning Electron Microscope with In Situ Capabilities
MRI:获取具有原位功能的扫描电子显微镜
- 批准号:
0722990 - 财政年份:2007
- 资助金额:
$ 62万 - 项目类别:
Standard Grant
Reconciling STEM and SAXS for Ionomer Morphologies
协调 STEM 和 SAXS 的离聚物形态
- 批准号:
0549116 - 财政年份:2006
- 资助金额:
$ 62万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
- 批准号:
2337506 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Standard Grant
Manufacturing Nanostructured Metallic Materials via 3D Printed Polymers
通过 3D 打印聚合物制造纳米结构金属材料
- 批准号:
DE240100917 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Discovery Early Career Researcher Award
SBIR Phase I: All-Semiconductor Nanostructured Lenses for High-Tech Industries
SBIR 第一阶段:用于高科技行业的全半导体纳米结构镜头
- 批准号:
2335588 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Standard Grant
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
- 批准号:
2337507 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Standard Grant
Design theory-based nanostructured leaf-vein networks for selective VOC sensing
基于理论的纳米结构叶脉网络用于选择性 VOC 传感
- 批准号:
EP/W022451/1 - 财政年份:2023
- 资助金额:
$ 62万 - 项目类别:
Research Grant
Nanostructured Silicon-Based Wearable and Implantable Biosensors
纳米结构硅基可穿戴和植入式生物传感器
- 批准号:
FL220100185 - 财政年份:2023
- 资助金额:
$ 62万 - 项目类别:
Australian Laureate Fellowships
Strain-Hardening Mechanisms in Ferrous Bulk Nanostructured Metals: Towards Managing Ultra-high Strength and Large Ductility
黑色金属块体纳米结构金属的应变硬化机制:实现超高强度和大延展性
- 批准号:
23H00234 - 财政年份:2023
- 资助金额:
$ 62万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Parametric design software for nanostructured CRISPR payloads
用于纳米结构 CRISPR 有效负载的参数化设计软件
- 批准号:
10602823 - 财政年份:2023
- 资助金额:
$ 62万 - 项目类别:
Design theory-based nanostructured leaf-vein networks for selective VOC sensing
基于理论的纳米结构叶脉网络用于选择性 VOC 传感
- 批准号:
EP/W024284/1 - 财政年份:2023
- 资助金额:
$ 62万 - 项目类别:
Research Grant
Development of Nanostructured Scaffolds for Stem Cell Culture to Directly Regulate Cellular Functions via Natural Polysaccharide Nanofibers
开发用于干细胞培养的纳米结构支架,通过天然多糖纳米纤维直接调节细胞功能
- 批准号:
23H00345 - 财政年份:2023
- 资助金额:
$ 62万 - 项目类别:
Grant-in-Aid for Scientific Research (A)