Homological Methods and Tilting Theory of Finite Dimensional Algebras
有限维代数的同调方法和倾斜理论
基本信息
- 批准号:1904770
- 负责人:
- 金额:$ 2.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference "Homological Methods and Tilting Theory of Finite Dimensional Algebras" will be held at The University of Iowa on August 16-19, 2019. The meeting will be a main event for researchers in the field of representation theory of finite dimensional algebras, with special focus on homological methods. Homological and categorical methods, including tilting theory, have had a great impact on representation theory of finite dimensional algebras and many of the main conjectures of the field have a homological flavor. The conference will include both talks by experts on recent progress and new approaches to open questions, and talks by early-career researchers about their research. The meeting will bring together experts in representation theory and related fields, as well as early-career mathematicians, especially postdocs and graduate students. One goal of the meeting is to introduce participants to the latest directions in tilting theory and categorical methods, as well as new ideas and progress on homological conjectures, via expository talks by senior mathematicians that will be accessible to graduate students. The conference will provide a dynamic atmosphere encouraging interactions between leaders in the field and early-career mathematicians and PhD students, and the schedule will provide ample time for discussions and forging new collaborations. Details of the conference are available at the website http://homepage.divms.uiowa.edu/~miovanov/Homological-Methods.html.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
会议“同调方法和有限维代数的倾斜理论”将于2019年8月16日至19日在爱荷华州大学举行。会议将是一个主要事件的研究人员在该领域的表示理论的有限维代数,特别侧重于同调方法。同调和范畴方法,包括倾斜理论,对有限维代数的表示理论产生了巨大的影响,该领域的许多主要结构都具有同调的味道。会议将包括专家关于最新进展和开放问题新方法的演讲,以及早期职业研究人员关于他们研究的演讲。会议将汇集代表性理论和相关领域的专家,以及早期职业数学家,特别是博士后和研究生。会议的一个目标是向与会者介绍倾斜理论和分类方法的最新方向,以及同调构造的新思想和进展,通过高级数学家的临时演讲,研究生将可以访问。会议将提供一个充满活力的氛围,鼓励该领域的领导者与早期职业数学家和博士生之间的互动,时间表将为讨论和建立新的合作提供充足的时间。会议的详细信息可在网站www.example.com上查阅http://homepage.divms.uiowa.edu/~miovanov/Homological-Methods.html.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miodrag Iovanov其他文献
Miodrag Iovanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
- 批准号:
2750689 - 财政年份:2025
- 资助金额:
$ 2.35万 - 项目类别:
Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
- 批准号:
2686844 - 财政年份:2025
- 资助金额:
$ 2.35万 - 项目类别:
Studentship
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
- 批准号:
DE240100316 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Discovery Early Career Researcher Award
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
- 批准号:
2907463 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Studentship
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
- 批准号:
EP/Z532976/1 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Research Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
- 批准号:
2333724 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
- 批准号:
2422291 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Continuing Grant