Innovative Weak Galerkin Finite Element Methods with Application in Fluorescence Tomography
创新的弱伽辽金有限元方法在荧光断层扫描中的应用
基本信息
- 批准号:1905195
- 负责人:
- 金额:$ 1.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-05 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fluorescence tomography (FT) is an emerging three-dimensional optical imaging modality that uses in vivo noninvasive depth-resolved localization and quantification of fluorescent-tagged inclusions. FT techniques have been extensively employed in early cancer detection, guidance of tumor resection, and drug monitoring and discovery. This research project aims to develop new numerical methods for computational problems arising in FT imaging. Besides fluorescence tomography, the numerical methods can be applied to solve partial differential equations that arise in various other disciplines. The models, theory, and computational methods under development in this project will be of great value in the fields of digital image processing, medical imaging, and numerical analysis, with direct applications in broad areas such as digital image and even construction industries. Students will be trained in this project.The goal of this research project is to develop and analyze efficient numerical methods -- weak Galerkin (WG) finite element methods -- to address challenges posed by fourth-order problems arising in fluorescence tomography theory. The research will explore algorithmic advancements, new convergence theory, and imaging technology improvement, by: (1) developing robust finite element methods for a fourth order partial differential equation in the primal variable formulation for which no existing method works; (2) establishing a stability and convergence, including superconvergence, theory for the newly developed finite element methods; (3) validating and verifying the methods through collaboration with domain-specific researchers; (4) analyzing a new weak Galerkin mixed finite element method for a fourth order partial differential equation; and (5) developing application-oriented software packages, tested and validated with collaborators in the area of FT.
荧光断层扫描(FT)是一种新兴的三维光学成像方式,使用体内无创深度分辨定位和定量荧光标记的内含物。FT技术已广泛应用于早期癌症检测、指导肿瘤切除、药物监测和发现等领域。本研究计划旨在发展新的数值方法,以解决傅立叶变换成像中出现的计算问题。除荧光层析成像外,数值方法还可用于求解其他学科中出现的偏微分方程。该项目所开发的模型、理论和计算方法在数字图像处理、医学成像和数值分析等领域具有重要价值,在数字图像甚至建筑行业等广泛领域具有直接应用价值。学生将在这个项目中接受培训。本研究项目的目标是开发和分析有效的数值方法-弱伽辽金(WG)有限元方法-以解决荧光层析成像理论中出现的四阶问题所带来的挑战。该研究将探索算法的进步,新的收敛理论和成像技术的改进,通过:(1)开发鲁棒的有限元方法来解决四阶偏微分方程在原始变量公式中没有现有方法有效;(2)为新发展的有限元方法建立了稳定性和收敛性,包括超收敛性理论;(3)通过与特定领域研究人员的合作,对方法进行验证和验证;(4)分析了求解四阶偏微分方程的一种新的弱Galerkin混合有限元法;(5)开发面向应用的软件包,并与FT领域的合作者进行测试和验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chunmei Wang其他文献
An experimental investigation on the burning behaviors of lithium ion batteries after different immersion times
锂离子电池不同浸泡时间后燃烧行为的实验研究
- DOI:
10.1016/j.jclepro.2019.118539 - 发表时间:
2020 - 期刊:
- 影响因子:11.1
- 作者:
Changfa Tao;Qingpan Ye;Chunmei Wang;Yejian Qian;Chenfang Wang;Taotao Zhou;Zhiguo Tang - 通讯作者:
Zhiguo Tang
The influence of source data density for Generating DEMs
源数据密度对生成 DEM 的影响
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Wang lei;Yang Qinke;Long Yongqin;Weiling Guo;Chunmei Wang - 通讯作者:
Chunmei Wang
Action of nitromezuril against Eimeria tenella with clinically anticoccidial indices and histopathology
硝基苯珠利对柔嫩艾美耳球虫的作用及其临床抗球虫指数和组织病理学
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:2
- 作者:
Rufeng She;Chenzhong Fei;Huiya Chen;Xiaoyang Wang;Mi Wang;Keyu Zhang;Li;Chunmei Wang;Yingchun Liu;Wenli Zheng;F. Xue - 通讯作者:
F. Xue
4-Aminopyridine grafted sulfonated poly(arylene ether ketone sulfone) proton exchange membrane with high relative selectivity for fuel cells
燃料电池用4-氨基吡啶接枝磺化聚芳醚酮砜质子交换膜
- DOI:
10.1016/j.ijhydene.2019.09.108 - 发表时间:
2020-11 - 期刊:
- 影响因子:7.2
- 作者:
Chunmei Wang;Hai Qiang Li;Zhe Wang;Jingmei Xu;Chang Liu;Wenchang Liu;Zhaoyu Chen;Xinming Du - 通讯作者:
Xinming Du
A novel 2-D metal‐organic layer containing helical double channels based on nickel,
一种新型二维金属有机层,含有基于镍的螺旋双通道,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:3.8
- 作者:
Bo Li;Kai Yu *;Chunxiao Wang;Zhanhua Su;Chunmei Wang;Baibin Zhou * - 通讯作者:
Baibin Zhou *
Chunmei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chunmei Wang', 18)}}的其他基金
Conference: Women in Scientific Computing on Complex Physical and Biological Systems
会议:复杂物理和生物系统科学计算中的女性
- 批准号:
2212165 - 财政年份:2022
- 资助金额:
$ 1.45万 - 项目类别:
Standard Grant
Collaborative Research: Friedrichs Learning: Mathematical Foundation and Applications
合作研究:弗里德里希学习:数学基础与应用
- 批准号:
2206332 - 财政年份:2022
- 资助金额:
$ 1.45万 - 项目类别:
Standard Grant
CAREER: Primal-Dual Weak Galerkin Finite Element Methods
职业:原始-对偶弱伽辽金有限元方法
- 批准号:
2136380 - 财政年份:2021
- 资助金额:
$ 1.45万 - 项目类别:
Continuing Grant
CAREER: Primal-Dual Weak Galerkin Finite Element Methods
职业:原始-对偶弱伽辽金有限元方法
- 批准号:
1749707 - 财政年份:2018
- 资助金额:
$ 1.45万 - 项目类别:
Continuing Grant
CAREER: Primal-Dual Weak Galerkin Finite Element Methods
职业:原始-对偶弱伽辽金有限元方法
- 批准号:
1849483 - 财政年份:2018
- 资助金额:
$ 1.45万 - 项目类别:
Continuing Grant
Innovative Weak Galerkin Finite Element Methods with Application in Fluorescence Tomography
创新的弱伽辽金有限元方法在荧光断层扫描中的应用
- 批准号:
1648171 - 财政年份:2016
- 资助金额:
$ 1.45万 - 项目类别:
Standard Grant
Polytopal Element Methods in Mathematics and Engineering; October 26 - 28, 2015; Atlanta, GA
数学和工程中的多面元方法;
- 批准号:
1542183 - 财政年份:2015
- 资助金额:
$ 1.45万 - 项目类别:
Standard Grant
Innovative Weak Galerkin Finite Element Methods with Application in Fluorescence Tomography
创新的弱伽辽金有限元方法在荧光断层扫描中的应用
- 批准号:
1522586 - 财政年份:2015
- 资助金额:
$ 1.45万 - 项目类别:
Standard Grant
相似国自然基金
磁转动超新星爆发中weak r-process的关键核反应
- 批准号:12375145
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
高含水率坑井の水生産抑制に向けたWeakゲル開発と広域流体制御技術の向上
开发弱凝胶并改进广域流体控制技术以抑制高含水井产水
- 批准号:
24K08317 - 财政年份:2024
- 资助金额:
$ 1.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 1.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Organization of transcriptional machinery by weak multivalent interactions
通过弱多价相互作用组织转录机制
- 批准号:
10758297 - 财政年份:2023
- 资助金额:
$ 1.45万 - 项目类别:
Weak Solutions and Turbulence in Fluid Dynamics
流体动力学中的弱解和湍流
- 批准号:
2346799 - 财政年份:2023
- 资助金额:
$ 1.45万 - 项目类别:
Standard Grant
CAREER: Towards Open World Event Knowledge Extraction with Weak Supervision
职业:在弱监督下实现开放世界事件知识提取
- 批准号:
2238940 - 财政年份:2023
- 资助金额:
$ 1.45万 - 项目类别:
Continuing Grant
A Graph-based Methodology for Modeling the Nucleation of Weak Electrolytes
基于图形的弱电解质成核建模方法
- 批准号:
2317787 - 财政年份:2023
- 资助金额:
$ 1.45万 - 项目类别:
Continuing Grant
Bottom-up Approach for Improving Systems with weak power systems networks and gradual integration of off-grid community systems
自下而上的弱电力系统网络改进方法和离网社区系统的逐步整合
- 批准号:
2891694 - 财政年份:2023
- 资助金额:
$ 1.45万 - 项目类别:
Studentship
Creation of a CWO Control Method for Swarm Robots Based on "Weak Constraints"
基于“弱约束”的群体机器人CWO控制方法的创建
- 批准号:
23KJ1445 - 财政年份:2023
- 资助金额:
$ 1.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Improving organisational outcomes through weak ties: an investigation using behaviour settings
通过弱关系改善组织成果:使用行为设置的调查
- 批准号:
2887051 - 财政年份:2023
- 资助金额:
$ 1.45万 - 项目类别:
Studentship