Weak Solutions and Turbulence in Fluid Dynamics

流体动力学中的弱解和湍流

基本信息

  • 批准号:
    2346799
  • 负责人:
  • 金额:
    $ 28.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

A major goal in the field of fluid dynamics is to obtain a detailed and quantitative understanding of turbulence, which is a type of fluid motion characterized by rapid and irregular fluctuations in velocity. Turbulence plays a pivotal role in countless engineering and industrial applications such as the design of aircraft, where the production of turbulence must be understood to achieve energy efficient and effective technologies. It has long been believed that the inner workings of turbulence may be understood in terms of the differential equations that are being used to model fluid motion, including the Euler equations. However, the analysis of these equations has proved so difficult that much of the relationship between turbulence and solutions to the equations of fluid dynamics remains conjectural and unresolved. Recently, a new approach has been developed to analyze solutions to fluid equations that have rapid fluctuations comparable to what is seen in turbulence. This approach is intimately tied to questions in the mathematical discipline of geometry. This research project aims to push this new approach towards its fullest potential to improve the understanding of turbulence and to expand the frontiers of mathematical analysis. The project provides research training opportunities for graduate students.At a technical level, the PI will prove rigorous results on the structure of weak solutions to the equations of fluid dynamics, including the incompressible Euler equations. The results will address the extent to which such weak solutions can be shown to exhibit the properties observed or predicted of turbulent flows. One direction of research will relate to the phenomenon of anomalous dissipation of energy and generalizations of Onsager’s conjecture. The PI will also investigate fine properties of the dynamical structure of general weak solutions to the Euler and related equations. The research will implement and expand upon the method of convex integration, as well as introduce new tools of geometric or harmonic analysis as needed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
流体动力学领域的一个主要目标是获得对湍流的详细和定量的理解,湍流是一种以速度的快速和不规则波动为特征的流体运动。湍流在无数工程和工业应用中起着关键作用,例如飞机设计,必须了解湍流的产生以实现节能和有效的技术。长期以来,人们一直认为,湍流的内部工作原理可以根据用于模拟流体运动的微分方程(包括欧拉方程)来理解。然而,这些方程的分析已被证明是如此困难,以至于湍流与流体动力学方程的解之间的许多关系仍然是复杂的和未解决的。最近,已经开发了一种新的方法来分析流体方程的解,这些方程具有与湍流中所看到的相当的快速波动。这种方法与几何数学学科中的问题密切相关。该研究项目旨在推动这一新方法发挥其最大潜力,以提高对湍流的理解,并扩大数学分析的前沿。该项目为研究生提供了研究培训机会。在技术层面上,PI将证明流体动力学方程(包括不可压缩欧拉方程)弱解结构的严格结果。结果将解决在何种程度上,这种弱的解决方案可以显示出所观察到的或预测的湍流的属性。研究的一个方向将涉及能量的反常耗散现象和昂萨格猜想的推广。PI还将研究欧拉方程和相关方程的一般弱解的动力学结构的精细性质。该研究将实施和扩展凸积分的方法,以及根据需要引入新的几何或谐波分析工具。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Isett其他文献

H"{o}lder Continuous Euler flows with Compact Support and the Conservation of Angular Momentum
H"{o}lder 具有紧支撑和角动量守恒的连续欧拉流
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Philip Isett;Sung
  • 通讯作者:
    Sung
1 0 Fe b 20 14 Hölder Continuous Euler flows with Compact Support and the Conservation of Angular Momentum
1 0 Fe b 20 14 Hölder 具有紧支撑和角动量守恒的连续欧拉流
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Philip Isett;Sung
  • 通讯作者:
    Sung
Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time
  • DOI:
    10.1515/9781400885428
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Philip Isett
  • 通讯作者:
    Philip Isett
On the kinetic energy profile of Hölder continuous Euler flows
关于霍尔德连续欧拉流的动能剖面
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Philip Isett;Sung
  • 通讯作者:
    Sung
On the Endpoint Regularity in Onsager's Conjecture
  • DOI:
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Philip Isett
  • 通讯作者:
    Philip Isett

Philip Isett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Isett', 18)}}的其他基金

Weak Solutions and Turbulence in Fluid Dynamics
流体动力学中的弱解和湍流
  • 批准号:
    2055019
  • 财政年份:
    2021
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Standard Grant
Weak Solutions and Turbulence in Fluid Dynamics
流体动力学中的弱解和湍流
  • 批准号:
    1700312
  • 财政年份:
    2017
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1402370
  • 财政年份:
    2014
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Fellowship Award

相似海外基金

Exploration of nonlinear solutions dicribing wave turbulence using regularization
使用正则化描述波湍流的非线性解的探索
  • 批准号:
    22K03897
  • 财政年份:
    2022
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Weak Solutions and Turbulence in Fluid Dynamics
流体动力学中的弱解和湍流
  • 批准号:
    2055019
  • 财政年份:
    2021
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Standard Grant
Schlieren Imaging of Mixing and Turbulence in Dilute Polymer Solutions
稀聚合物溶液中混合和湍流的纹影成像
  • 批准号:
    532512-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Intermittent Solutions of the Navier-Stokes Equations: From Onsager's Conjecture to Turbulence
纳维-斯托克斯方程的间歇解:从昂萨格猜想到湍流
  • 批准号:
    1909849
  • 财政年份:
    2019
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Standard Grant
Schlieren Imaging of Mixing and Turbulence in Dilute Polymer Solutions
稀聚合物溶液中混合和湍流的纹影成像
  • 批准号:
    532512-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Investigation of the effect of weak acceleration on turbulence decay and modeling with approximate solutions
研究弱加速度对湍流衰减的影响并用近似解进行建模
  • 批准号:
    18K03932
  • 财政年份:
    2018
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of high-fidelity turbulence model based on invariant solutions
基于不变解的高保真湍流模型的开发
  • 批准号:
    18K13689
  • 财政年份:
    2018
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Weak Solutions and Turbulence in Fluid Dynamics
流体动力学中的弱解和湍流
  • 批准号:
    1700312
  • 财政年份:
    2017
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Standard Grant
Bulk Turbulence in Polymer Solutions: Beyond Friction Drag Reduction
聚合物溶液中的整体湍流:超越摩擦减阻
  • 批准号:
    1600292
  • 财政年份:
    2015
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Standard Grant
Bulk Turbulence in Polymer Solutions: Beyond Friction Drag Reduction
聚合物溶液中的整体湍流:超越摩擦减阻
  • 批准号:
    1436423
  • 财政年份:
    2014
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了