Improving Human-Exoskeleton Fluency Through an Investigation of Dynamic Control Parameters

通过研究动态控制参数提高人体外骨骼的流畅性

基本信息

  • 批准号:
    1905524
  • 负责人:
  • 金额:
    $ 69.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2019-10-31
  • 项目状态:
    已结题

项目摘要

Wearable robotic exoskeletons have potential to reduce workplace injuries by providing assistive forces that decrease the physical loads human workers experience. The goal of this project is to study the usability and user psychological comfort of an ankle exoskeleton during its interactions with its user. The device will be programmed to provide dynamic support as people walk and change walking speeds. The long term goals are to develop technology that infers and anticipates its user's intent, and to use that information to adapt the exoskeleton's behavior to maximize the user's trust in the exoskeletal system and the human-exoskeletal "fluency", defined as the synchronized meshing of actions within the human-technology team. Human-exoskeleton fluency results from the co-adaptation between the human and exoskeleton, driven by the motor strategies selected by the human when using the system and by the updates in the control policy based on the human. The goal of this project is to examine how uncertainty in the timing and presence of assistive force actuations impacts human-exoskeleton fluency and human trust in the exoskeletal system. This research will be impactful both for military applications, where high rates of musculoskeletal overuse injury threaten military readiness, and for industrial applications, where muscle strains, sprains, and tears cause about one third of the reported cases of lost work days. By integrating models of user intent, human trust, and human-exoskeleton fluency with the Dephy Bionic Boot, this project will advance the NSF mission to promote the progress of science and advance national health by exploring fundamental relationships human behavior, motor control, and machine manipulation within the context of exoskeletal gait assistance. The project supports K-5, undergraduate and graduate education through outreach, curriculum development, and mentorship.As a first step towards developing an anticipatory assistive exoskeleton controller that co-adapts with its human user, the specific objective of the proposed research is to test the hypotheses that human trust and human-exoskeleton fluency are affected by (1) assistive force transition timing and (2) early, late, or missed actuations within the gait cycle. This project has three aims. The first seeks to evaluate the effect of variations in assistive force transition timing on human-exoskeleton fluency. The second evaluates how uncertainty in the timing and presence of assistive force actuations impacts human performance and system trust. The third aim develops a co-adaptive controller that seeks to continuously increase fluency in real-time. The research team uses the commercially available Dephy Bionic Boot with custom control algorithms to permit hypothesis evaluation. The study will be performed within a CAREN virtual reality environment on a split-belt, instrumented treadmill that permits self-pacing. Subjects will perform speed changing tasks while also performing dual tasks and responding to questions designed to probe situation awareness. New measures of human-exoskeleton fluency and trust are analyzed. This work could lead to significant improvements in the adaptability, capability, and usability of wearable exoskeletal systems for human performance enhancement in industrial and military applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可穿戴机器人外骨骼有可能通过提供辅助力量来减少工作场所的伤害,从而减少人类工人的身体负荷。本计画的目的是研究踝关节外骨骼在与使用者互动时的可用性与使用者心理舒适度。该设备将被编程为人们行走和改变行走速度时提供动态支持。长期目标是开发推断和预测其用户意图的技术,并使用该信息来调整外骨骼的行为,以最大限度地提高用户对外骨骼系统和人类-外骨骼“流畅性”的信任,该“流畅性”被定义为人类-技术团队内的动作的同步啮合。 人-外骨骼流畅性来自人与外骨骼之间的共适应,由人在使用系统时选择的运动策略以及基于人的控制策略中的更新驱动。该项目的目标是研究辅助力驱动的时间和存在的不确定性如何影响人类外骨骼流畅性和人类对外骨骼系统的信任。这项研究将对军事应用和工业应用产生影响,在军事应用中,肌肉骨骼过度使用损伤的发生率很高,威胁到军事准备,在工业应用中,肌肉拉伤、扭伤和撕裂导致约三分之一的工作日损失。 通过将用户意图、人类信任和人类-外骨骼流畅性模型与Defy仿生靴子相结合,该项目将推进NSF的使命,即通过探索外骨骼步态辅助背景下人类行为、运动控制和机器操作的基本关系,促进科学进步和促进国民健康。 该项目通过外展、课程开发和导师制支持K-5、本科和研究生教育。作为开发与人类用户共同适应的预期辅助外骨骼控制器的第一步,拟议研究的具体目标是测试人类信任和人类外骨骼流畅性受以下因素影响的假设:(1)辅助力过渡时间和(2)早期,晚期,或者在步态周期内错过致动。 该项目有三个目标。第一个目的是评估辅助力过渡时间的变化对人类外骨骼流畅性的影响。 第二个评估辅助力驱动的时间和存在的不确定性如何影响人类的表现和系统的信任。第三个目标是开发一个自适应控制器,旨在不断提高实时流畅性。研究团队使用市售的Defy仿生靴子和自定义控制算法进行假设评估。本研究将在CAREN虚拟现实环境中,在允许自我起搏的分离式带仪表跑步机上进行。受试者将执行速度变化的任务,同时也执行双重任务,并回答旨在探索情境意识的问题。分析了人类外骨骼流畅性和信任度的新度量。这项工作可能会显着提高可穿戴外骨骼系统的适应性、能力和可用性,以增强工业和军事应用中的人类性能。该奖项反映了NSF的法定使命,并通过使用基金会的知识产权进行评估被认为值得支持优点和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Static, Dynamic, and Cognitive Fit of Exosystems for the Human Operator
  • DOI:
    10.1177/0018720819896898
  • 发表时间:
    2020-01-31
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Stirling, Leia;Kelty-Stephen, Damian;Choi, Hyeg Joo
  • 通讯作者:
    Choi, Hyeg Joo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leia Stirling其他文献

Emergent Gait Strategies Defined by Cluster Analysis When Using Imperfect Exoskeleton Algorithms
使用不完美外骨骼算法时通过聚类分析定义的紧急步态策略
Examination of the torque required to passively palmar abduct the thumb CMC joint in a pediatric population with hemiplegia and stroke
  • DOI:
    10.1016/j.jbiomech.2015.10.027
  • 发表时间:
    2015-12-16
  • 期刊:
  • 影响因子:
  • 作者:
    Leia Stirling;Mona Qureshi Ahmad;Damian Kelty-Stephen;Annette Correia
  • 通讯作者:
    Annette Correia
The effect of a passive shoulder exoskeleton on a sensorimotor task when performed above and at shoulder height
  • DOI:
    10.1016/j.ergon.2024.103668
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jianyang Tang;Dongjoon Kong;Leia Stirling
  • 通讯作者:
    Leia Stirling
Effects of Biofeedback on Muscle Effort Reduction when Holding Positions with a Powered Upper Limb Exoskeleton
使用动力上肢外骨骼保持姿势时生物反馈对减少肌肉用力的影响
Impact of Imperfect Exoskeleton Algorithms on Step Characteristics, Task Performance, and Perception of Exoskeleton Performance
不完美的外骨骼算法对步态特征、任务性能和外骨骼性能感知的影响

Leia Stirling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leia Stirling', 18)}}的其他基金

Collaborative Research: Legible Co-Adaptation of Wearable Devices for As-Needed Assistance of Arm Motion
合作研究:可穿戴设备的清晰协同适应,以按需协助手臂运动
  • 批准号:
    2110133
  • 财政年份:
    2021
  • 资助金额:
    $ 69.07万
  • 项目类别:
    Continuing Grant
Improving Human-Exoskeleton Fluency Through an Investigation of Dynamic Control Parameters
通过研究动态控制参数提高人体外骨骼的流畅性
  • 批准号:
    1952279
  • 财政年份:
    2019
  • 资助金额:
    $ 69.07万
  • 项目类别:
    Standard Grant
CAREER: Advances in Monitoring Human Performance: Moving Wearable Technology from the Expert to Nonexpert User
职业:监测人类表现的进展:将可穿戴技术从专家转向非专家用户
  • 批准号:
    1453141
  • 财政年份:
    2015
  • 资助金额:
    $ 69.07万
  • 项目类别:
    Continuing Grant

相似国自然基金

靶向Human ZAG蛋白的降糖小分子化合物筛选以及疗效观察
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
HBV S-Human ESPL1融合基因在慢性乙型肝炎发病进程中的分子机制研究
  • 批准号:
    81960115
  • 批准年份:
    2019
  • 资助金额:
    34.0 万元
  • 项目类别:
    地区科学基金项目
基于自适应表面肌电模型的下肢康复机器人“Human-in-Loop”控制研究
  • 批准号:
    61005070
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Modeling Human Gait to Optimize Exoskeleton Control and Understand How the Goal Changes across Walking Tasks
职业:模拟人类步态以优化外骨骼控制并了解步行任务中目标如何变化
  • 批准号:
    1943561
  • 财政年份:
    2020
  • 资助金额:
    $ 69.07万
  • 项目类别:
    Continuing Grant
Bio-inspired Exoskeletons and Safety in Human-Exoskeleton Cooperation
仿生外骨骼与人外骨骼合作的安全性
  • 批准号:
    1915872
  • 财政年份:
    2019
  • 资助金额:
    $ 69.07万
  • 项目类别:
    Standard Grant
A lower-limb exoskeleton system for investigating the neuromechanical control of human locomotion and designing assistive robotic aids
用于研究人类运动的神经机械控制和设计辅助机器人辅助工具的下肢外骨骼系统
  • 批准号:
    RTI-2020-00658
  • 财政年份:
    2019
  • 资助金额:
    $ 69.07万
  • 项目类别:
    Research Tools and Instruments
Improving Human-Exoskeleton Fluency Through an Investigation of Dynamic Control Parameters
通过研究动态控制参数提高人体外骨骼的流畅性
  • 批准号:
    1952279
  • 财政年份:
    2019
  • 资助金额:
    $ 69.07万
  • 项目类别:
    Standard Grant
Biomechanical study of the performance of a passive exoskeleton and its impact on the human body
被动外骨骼性能及其对人体影响的生物力学研究
  • 批准号:
    508682-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 69.07万
  • 项目类别:
    Engage Grants Program
Modeling the human-machine interface of a lower limb exoskeleton.
下肢外骨骼的人机界面建模。
  • 批准号:
    475278-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 69.07万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
NRI-Small: A Novel Light-weight Cable-driven Active Leg Exoskeleton (C-ALEX) for Training of Human Gait
NRI-Small:一种用于人类步态训练的新型轻型电缆驱动主动腿部外骨骼 (C-ALEX)
  • 批准号:
    1339666
  • 财政年份:
    2013
  • 资助金额:
    $ 69.07万
  • 项目类别:
    Continuing Grant
NRI-Small: A Novel Light-weight Cable-driven Active Leg Exoskeleton (C-ALEX) for Training of Human Gait
NRI-Small:一种用于人类步态训练的新型轻型电缆驱动主动腿部外骨骼 (C-ALEX)
  • 批准号:
    1208313
  • 财政年份:
    2012
  • 资助金额:
    $ 69.07万
  • 项目类别:
    Continuing Grant
NSF-CPS-Medium: Collaborative Research: Design and development of a cybernetic exoskeleton for hand-wrist rehabilitation through the integration of human passive properties
NSF-CPS-Medium:合作研究:通过整合人类被动特性,设计和开发用于手腕康复的控制论外骨骼
  • 批准号:
    1135949
  • 财政年份:
    2011
  • 资助金额:
    $ 69.07万
  • 项目类别:
    Standard Grant
NSF-CPS-Medium: Collaborative Research: Design and development of a cybernetic exoskeleton for hand-wrist rehabilitation through the integration of human passive properties
NSF-CPS-Medium:合作研究:通过整合人类被动特性,设计和开发用于手腕康复的控制论外骨骼
  • 批准号:
    1135916
  • 财政年份:
    2011
  • 资助金额:
    $ 69.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了