Lithography on a nanosphere--an optical approach to arbitrarily patterned patchy particles
纳米球光刻——一种任意图案斑片粒子的光学方法
基本信息
- 批准号:1905527
- 负责人:
- 金额:$ 49.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYSelf-assembly -the spontaneous formation of well-defined ordered structures from simpler components- is a key mechanism that enables living organism to develop and grow in size and complexity. If self-assembly could be fully applied to technological problems, it would make it possible to create materials and devices that are well beyond the reach of other fabrication techniques, potentially revolutionizing many areas of materials science, electrical and chemical engineering, and other fields. One of the barriers preventing this is the difficulty in making starting components of sufficient complexity of the required quality for efficient self-assembly to take place. This project, which is supported by the Solid State and Materials Chemistry program at NSF, implements a new technique for making such particles. The particles are between a few hundred nanometers and a few micrometers in size and possess surface properties that can be patterned in nearly any configuration. These so-called "patchy particles" are excellent candidates for self-assembly starting components. The technique researchers at Virginia Polytechnic Institute and State University employ uses light to pattern spherical particles that are suspended in liquid, and it has very few restrictions of the distribution and configuration of the pattern fabricated on the spheres. On the level of basic science, this new route to patchy particles permits a more thorough exploration of self-assembly, which helps unravel the principles underlying this complex and only partially understood phenomenon. Because the same pattern can straightforwardly be projected onto any number of particles, it potentially makes the technique amenable to future production of patchy particle on an industrial scale. Thereby, this research may impact a wide range of fields, but some of the project's initial target structures may be particularly useful in the areas of flexible solar cells and in microrobotics. In addition to the scientific and potential technological advances described, students are benefitting from this research either by direct involvement in the project and mentoring, or through the insights it adds to the course curriculum of the new Nanoscience program at Virginia Polytechnic Institute and State University.PART 2: TECHNICAL SUMMARYWith this project, supported by the Solid State and Materials Chemistry program at NSF, researchers at Virginia Polytechnic Institute and State University develop a new paradigm for synthesizing patchy particles with a patch distribution that can be chosen with nearly complete freedom, and to demonstrate the self-assembly of these particles into well-defined structures, includes some that are not readily achievable with existing patchy particle fabrication techniques. The project applies an optical imaging technique to project identical patterns on any number of dielectric nanospheres and/or microspheres, where functionalization with ligands containing photocleavable protecting groups (PPGs) ensure that the optical patterns are transferred into functional groups such as amines, thiols, carboxyls, etc., which can then be modified further to produce patches with desired functionality. With functionalizations containing optically orthogonal PPGs (including o-nitrobenzyl, aminocoumarin, and BODIPY groups), multiple patch types with distinct properties can be produced through a single exposure, which is required for full implementation of the patchy particle concept. The basic building blocks for self-assembly are titania micro- and nanospheres for which a number of ligands are developed to suit the needs of the project, using phosphonic acid anchors to form stable bonds with the surface. Titania spheres are particularly useful for applications beneficial to society, such as photonic crystals for high efficiency dye-sensitized solar cells. Other potential applications include TiO2/Pt light-controlled micromotors, or their photocatalytic properties could be used to directly assist in the surface patch formation. As part of this project one or more patch-patch interactions (such as hydrophobic attraction, electrostatic binding, biotin-avidin binding etc.) are used to achieve several target structures ranging from relatively simple (linear chains, tetrahedra) to more challenging but previously demonstrated (Kagome lattices, pentapods) to structures of high interest that have yet to be assembled (icosahedra, diamond-structure colloidal crystals.) The patterning can be applied to particles in a bulk suspension and is therefore potentially scalable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术自组装--从较简单的组件自发形成定义明确的有序结构--是使生物有机体在大小和复杂性上发展和增长的关键机制。如果自组装可以完全应用于技术问题,它将使制造出远远超出其他制造技术的材料和设备成为可能,可能会给材料科学、电气和化学工程以及其他领域的许多领域带来革命性的变化。阻碍这一点的障碍之一是难以制造具有足够复杂性的启动部件,而这些部件的质量是进行有效自组装所需的。该项目由美国国家科学基金会的固体和材料化学项目支持,实现了一种制造这种颗粒的新技术。这些颗粒的大小在几百纳米到几微米之间,并具有几乎可以在任何形状上形成图案的表面特性。这些所谓的“片状粒子”是自组装启动元件的极佳候选者。弗吉尼亚理工学院和州立大学的研究人员使用光来设计悬浮在液体中的球形颗粒的图案,并且它对在球形颗粒上制造的图案的分布和形状几乎没有限制。在基础科学的层面上,这种新的获得片状粒子的途径允许对自组装进行更彻底的探索,这有助于揭开这种复杂且只有部分了解的现象背后的原理。由于相同的图案可以直接投射到任意数量的颗粒上,因此这项技术可能使该技术适用于未来工业规模的片状颗粒生产。因此,这项研究可能会影响广泛的领域,但该项目的一些初始目标结构可能在柔性太阳能电池和微型机器人领域特别有用。除了所描述的科学和潜在的技术进步,学生们还受益于这项研究,要么是通过直接参与项目和指导,要么是通过它添加到弗吉尼亚理工学院和州立大学新的纳米科学计划的课程课程中的见解。第2部分:技术总结随着这个由NSF固体状态和材料化学计划支持的项目,弗吉尼亚理工学院和州立大学的研究人员开发了一种新的范例,用于合成具有贴片分布的片状粒子,该片状粒子可以几乎完全自由地选择,并展示这些粒子的自我组装成定义良好的结构,包括一些用现有的片状粒子制造技术不容易实现的结构。该项目应用光学成像技术在任意数量的介电纳米球和/或微球上投影相同的图案,其中含有可光裂解保护基团(PPG)的配体的官能化确保光学图案被转移到诸如胺、硫醇、羧基等官能团,然后可以进一步修饰这些官能团以产生具有所需功能的贴片。使用包含光学正交PPG(包括邻硝基苄基、氨基香豆素和BODIPY基团)的官能化,可以通过一次曝光产生多种具有不同性质的贴片类型,这是全面实现片状粒子概念所必需的。自组装的基本构件是二氧化钛微球和纳米球,为适应该项目的需要,开发了许多配体,使用磷酸锚定与表面形成稳定的键。二氧化钛球体特别适用于有益于社会的应用,例如用于高效染料敏化太阳能电池的光子晶体。其他潜在的应用包括二氧化钛/铂光控微电机,或者它们的光催化性能可以直接用于辅助表面贴片的形成。作为该项目的一部分,一个或多个贴片-贴片相互作用(如疏水吸引、静电结合、生物素-亲和素结合等)被用来实现几种目标结构,从相对简单的(直链、四面体)到更具挑战性但先前展示的(Kagome晶格、五足),再到尚未组装的高度感兴趣的结构(二十面体、钻石结构的胶体晶体)。该图案可应用于散装悬浮液中的颗粒,因此具有潜在的可伸缩性。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans Robinson其他文献
Hans Robinson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans Robinson', 18)}}的其他基金
A Nonlinear Optical Approach to Patchy Particles
斑块粒子的非线性光学方法
- 批准号:
1006753 - 财政年份:2010
- 资助金额:
$ 49.65万 - 项目类别:
Standard Grant
Ultra-Efficient Plasmonic Nanoparticle Markers for Second Harmonic Imaging Microscopy
用于二次谐波成像显微镜的超高效等离子体纳米颗粒标记
- 批准号:
0756693 - 财政年份:2008
- 资助金额:
$ 49.65万 - 项目类别:
Continuing Grant
相似海外基金
Supplement to Support the Development of a New Multiplexed Imaging Tool using Raman Spectroscopy for Breast Cancer
支持开发使用拉曼光谱治疗乳腺癌的新型多重成像工具的补充材料
- 批准号:
10839117 - 财政年份:2023
- 资助金额:
$ 49.65万 - 项目类别:
A New Multimodal Molecular Imaging Approach to Guide Intra-Operative Tumor Resection and Post-Operative Treatment Planning
一种新的多模态分子成像方法来指导术中肿瘤切除和术后治疗计划
- 批准号:
10578468 - 财政年份:2023
- 资助金额:
$ 49.65万 - 项目类别:
Topical Drug Delivery for Treating Macular Degeneration
治疗黄斑变性的局部给药
- 批准号:
10058218 - 财政年份:2020
- 资助金额:
$ 49.65万 - 项目类别:
Topical Drug Delivery for Treating Macular Degeneration
治疗黄斑变性的局部给药
- 批准号:
9889244 - 财政年份:2020
- 资助金额:
$ 49.65万 - 项目类别:
Topical Drug Delivery for Treating Macular Degeneration
治疗黄斑变性的局部给药
- 批准号:
10338098 - 财政年份:2020
- 资助金额:
$ 49.65万 - 项目类别:
RUI: Optical Excitation of Nonradiating Nanosphere for Lossless Device
RUI:用于无损器件的非辐射纳米球的光激发
- 批准号:
1809410 - 财政年份:2018
- 资助金额:
$ 49.65万 - 项目类别:
Standard Grant
Long-Term Non-Enzymatic Glucose Sensors for an Artificial Pancreas
用于人工胰腺的长期非酶葡萄糖传感器
- 批准号:
8633308 - 财政年份:2013
- 资助金额:
$ 49.65万 - 项目类别:
Long-Term Non-Enzymatic Glucose Sensors for an Artificial Pancreas
用于人工胰腺的长期非酶葡萄糖传感器
- 批准号:
8931206 - 财政年份:2013
- 资助金额:
$ 49.65万 - 项目类别:
Functional, cellular, and molecular imaging and therapy monitoring using ultrasou
使用超声波进行功能、细胞和分子成像和治疗监测
- 批准号:
8550779 - 财政年份:2012
- 资助金额:
$ 49.65万 - 项目类别:
Functional, cellular, and molecular imaging and therapy monitoring using ultrasou
使用超声波进行功能、细胞和分子成像和治疗监测
- 批准号:
8687972 - 财政年份:2012
- 资助金额:
$ 49.65万 - 项目类别:














{{item.name}}会员




