Voltage controlled antiferromagnetism in magnetic tunnel junctions

磁隧道结中的压控反铁磁性

基本信息

  • 批准号:
    1905783
  • 负责人:
  • 金额:
    $ 42.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical Abstract:An effective way to influence the magnetic properties of a thin film is by using electric fields, which may lead to many new functionalities in future generations of electronic devices. In most cases, this type of electric control of magnetic order is investigated in ferromagnetic (FM) systems. For example, both the preferred direction of magnetization and the size of magnetization of a Fe or Co thin film can be modified by voltages applied on adjacent dielectric layers. Indeed, this effect has been successfully used to manipulate the resistance of a magnetic tunnel junctions (MTJ), a sandwich structure where the tunneling probability of electrons across an insulting barrier depends on the relative orientations of the magnetizations of the two FM films on both sides of the insulator, to achieve a small switching energy that is below 10 fJ. In this project, the principal investigator explores the voltage-controlled magnetic properties in antiferromagnetic (AF) systems. Antiferromagnets have a number of advantages compared with the their FM counterparts: they have no net magnetization therefore AF cells can be packed into extremely high density without affecting each other; for the same reason, they are immune to external magnetic fields; due to the staggered arrangement of spins in antiferromagnets, the spin currents can possibly penetrate much deeper; and most importantly, the intrinsic magnetization switching frequency of antiferromagnets can be in the THz region, promising ultra-high speed operations as well as reduced switching energy. This project incorporates the education and training of graduate/undergraduate students and high school students, especially those belonging to underrepresented groups, in all stages of the research. In addition, outreach to general public will be carried out through activities such as Physics Phun Night and Physics Open House.Technical Abstract:This project aims to explore voltage-controlled antiferromagnetism in MTJs with AF barriers, and in MTJs with the spin-filtering tunneling effect where the magnetoresistance is driven by the AF/FM coupling. In the first research topic, perpendicular MTJs with AF barriers such as Chromium(III) oxide are fabricated, where the insulating layer serves as both the tunnel barrier and the AF material. The exchange bias of the AF materials and the voltage-controlled AF order can be very sensitively detected by the sharp transitions of the perpendicular tunneling magnetoresistance curves measured under different bias voltages. The ability to grow high quality thinfilm heterostructure with extremely small roughness, as well as the fabrication of perpendicular MTJ samples with sub-100nm lateral dimension will enable, for the first time, the investigation of many intrinsic properties with less parasitic effects associated with grain boundaries and defects in the AF layer. In the second research topic, the spin-filtering tunneling effect with the newly discovered 2 dimensional (2D) materials as barriers will be explored. Different 2D materials are incorporated with various nonmagnetic electrodes to facilitate the understanding of the very large TMR. The effort will be focused on voltage-controlled AF/FM coupling in 2D barriers, which can potentially lead to very efficient switching of MTJs. These research activities will not only add significantly to our understanding of voltage-controlled antiferromagnetism, but also benefit applications such as MRAM, spin logic, spintronic oscillators, and neuromorphic processors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:影响薄膜磁特性的一种有效方法是使用电场,这可能会导致未来几代电子设备中的许多新功能。在大多数情况下,这种类型的电控制的磁序在铁磁(FM)系统中进行了研究。例如,Fe或Co薄膜的优选磁化方向和磁化大小都可以通过施加在相邻电介质层上的电压来修改。实际上,这种效应已经成功地用于操纵磁性隧道结(MTJ)的电阻,磁性隧道结是一种夹层结构,其中电子穿过绝缘势垒的隧穿概率取决于绝缘体两侧上的两个FM膜的磁化的相对取向,以实现低于10 fJ的小切换能量。在这个项目中,主要研究者探索了反铁磁(AF)系统中的电压控制磁性。反铁磁体与FM相比具有许多优点:它们没有净磁化,因此AF单元可以被包装成非常高的密度而不会相互影响;出于同样的原因,它们不受外部磁场的影响;由于反铁磁体中自旋的交错排列,自旋电流可能会穿透得更深;最重要的是,反铁磁体的本征磁化切换频率可以在THz区域,从而有望实现超高速操作以及降低的切换能量。该项目在研究的所有阶段都包括对研究生/本科生和高中生,特别是那些属于代表性不足群体的学生的教育和培训。此外,还将通过物理物理学之夜和物理学开放日等活动向公众进行宣传。技术摘要:本项目旨在探索具有AF势垒的MTJ中的电压控制反铁磁性,以及具有自旋过滤隧道效应的MTJ中的磁阻由AF/FM耦合驱动。在第一个研究课题中,制造了具有AF屏障(例如氧化铬(III))的垂直MTJ,其中绝缘层用作隧道屏障和AF材料。通过在不同偏压下测量的垂直隧穿磁电阻曲线的突变,可以非常灵敏地检测出AF材料的交换偏压和电压控制的AF序。生长具有极小粗糙度的高质量薄膜异质结构的能力,以及具有亚100 nm横向尺寸的垂直MTJ样品的制造,将首次实现对许多固有特性的研究,同时减少与AF层中的晶界和缺陷相关的寄生效应。 在第二个研究课题中,将探索以新发现的二维(2D)材料作为势垒的自旋过滤隧道效应。 不同的2D材料与各种不同的TMR电极相结合,以便于理解非常大的TMR。这项工作将集中在2D屏障中的电压控制AF/FM耦合上,这可能会导致MTJ的非常有效的切换。这些研究活动不仅将大大增加我们对压控反铁磁性的理解,而且将使MRAM、自旋逻辑、自旋电子振荡器和神经形态处理器等应用受益。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Perpendicular magnetic tunnel junctions with multi-interface free layer
  • DOI:
    10.1063/5.0066782
  • 发表时间:
    2021-12-13
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Khanal, Pravin;Zhou, Bowei;Wang, Weigang
  • 通讯作者:
    Wang, Weigang
On the temperature-dependent characteristics of perpendicular shape anisotropy-spin transfer torque-magnetic random access memories
垂直形状各向异性-自旋转移矩-磁随机存取存储器的温度相关特性
  • DOI:
    10.1063/5.0054356
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Zhang, Wei;Tong, Zihan;Xiong, Yuzan;Wang, Weigang;Shao, Qiming
  • 通讯作者:
    Shao, Qiming
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weigang Wang其他文献

Classification of Ship Trajectories by Using Naive Bayesian algorithm
使用朴素贝叶斯算法对船舶轨迹进行分类
DPTCN: A novel deep CNN model for short text classification
DPTCN:一种用于短文本分类的新型深度 CNN 模型
Redistribution Mechanism of Irrigation Water and Salinity in Typical Irrigation and Drainage Unit in Hetao Irrigation District
河套灌区典型排灌单元灌溉水和盐度再分配机制
Reactions of C12–C14 n-Alkylcyclohexanes with Cl Atoms: Kinetics and Secondary Organic Aerosol Formation
C12→C14 正烷基环己烷与 Cl 原子的反应:动力学和二次有机气溶胶形成
  • DOI:
    10.1021/acs.est.1c08958
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ke Wang;Weigang Wang;Cici Fan;Junling Li;Ting Lei;Wenyu Zhang;Bo Shi;Yan Chen;Mingyuan Liu;Chaofan Lian;Zhe Wang;Maofa Ge
  • 通讯作者:
    Maofa Ge
Fully Plastic J-Integrals for Mixed Mode Fracture Induced by Inclined Surface Cracks in Pressurized Ductile Pipes
加压球墨铸铁管倾斜表面裂纹引起的混合模式断裂的全塑性 J 积分
  • DOI:
    10.22541/au.160621029.99154604/v1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Weigang Wang;Wei Yang;Chun
  • 通讯作者:
    Chun

Weigang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weigang Wang', 18)}}的其他基金

Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Standard Grant
Energy efficient spin-torque devices
节能自旋扭矩装置
  • 批准号:
    2230124
  • 财政年份:
    2022
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Standard Grant
CAREER:Toward ultra-low energy switching in spintronic devices
职业:自旋电子器件中的超低能量开关
  • 批准号:
    1554011
  • 财政年份:
    2016
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Standard Grant
Voltage controlled spintronic devices
电压控制的自旋电子器件
  • 批准号:
    1310338
  • 财政年份:
    2013
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Standard Grant

相似国自然基金

槲皮素控释系统调控Mettl3/Per1修复氧化应激损伤促牙周炎骨再生及机制研究
  • 批准号:
    82370921
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
肿瘤翻译调控蛋白调控大肠癌细胞转移能力的信号机制研究
  • 批准号:
    81000952
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
多肽树状物为载体的抗癌前体药物的合成和研究
  • 批准号:
    81072530
  • 批准年份:
    2010
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
植物病毒壳体"智能"纳米载体靶向肿瘤细胞的研究
  • 批准号:
    30973685
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
高臭氧浓度下水稻颖花和粒重形成受阻及其成因-FACE研究
  • 批准号:
    30871486
  • 批准年份:
    2008
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Controlled Environment Agriculture (CEAfREU)
REU 站点:受控环境农业 (CEAfREU)
  • 批准号:
    2349765
  • 财政年份:
    2024
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Standard Grant
CAREER: Hybrid Surface Coating Toward Corrosion-Controlled Magnesium-Based Implants
职业:针对腐蚀控制镁基植入物的混合表面涂层
  • 批准号:
    2339911
  • 财政年份:
    2024
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Continuing Grant
A cluster randomized controlled trial to evaluate pharmacy-based health promotion program to improve blood pressure control in Bangladesh, India and Pakistan
一项整群随机对照试验,旨在评估孟加拉国、印度和巴基斯坦基于药房的健康促进计划,以改善血压控制
  • 批准号:
    23K24566
  • 财政年份:
    2024
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Understanding Interface Controlled Mechanisms of Recrystallization in Microstructurally Complex Mg Alloys
职业:了解微观结构复杂镁合金中界面控制的再结晶机制
  • 批准号:
    2339387
  • 财政年份:
    2024
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Continuing Grant
Disruptive development of van der Waals semiconductors by enabling anion-controlled functionalities
通过实现阴离子控制功能来实现范德华半导体的颠覆性发展
  • 批准号:
    EP/X032116/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Research Grant
Memory Reshaping for Depression: A Remote Digital Randomised Controlled Feasibility Trial
抑郁症记忆重塑:远程数字随机控制可行性试验
  • 批准号:
    MR/Y008545/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Research Grant
Converting lignin condensed structures into high-value polyaromatic hydrocarbon chemicals by controlled pyrolysis
通过受控热解将木质素缩合结构转化为高价值的多芳烃化学品
  • 批准号:
    24K17940
  • 财政年份:
    2024
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
FLUXIONIC: Controlled transport of water and ions in nanoconfinement
FLUXIONIC:纳米限制中水和离子的受控传输
  • 批准号:
    EP/Y03113X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Research Grant
FLUXIONIC: Controlled transport of water and ions in nanoconfinement
FLUXIONIC:纳米限制中水和离子的受控传输
  • 批准号:
    EP/Y032543/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Research Grant
Exploiting Controlled Environments for the Development of Optimised Cannabis Sativa Phenotypes for Pharmaceutical Applications - CE-CannPharm
利用受控环境开发用于制药应用的优化大麻表型 - CE-CannPharm
  • 批准号:
    BB/Z514470/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.96万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了