3D Organized Nanoscale Reactors

3D 组织纳米级反应器

基本信息

  • 批准号:
    1905920
  • 负责人:
  • 金额:
    $ 38.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-11-15 至 2022-10-31
  • 项目状态:
    已结题

项目摘要

Non-Technical Abstract: Biochemical reactions in organisms and in numerous sensing and manufacturing applications are controlled by a special type of biomolecule, the enzyme. While there is a great demand for the design of new types of enzymes with enhanced properties, it is a very challenging task that requires enormous computational and synthetic efforts. There is another way to enhance the chemical activity of enzymes and to allow for a much more convenient use of them - by packaging these biomolecules in arrays. Such packaging also opens up the possibility of handling and processing enzymes similar to conventional materials. Until now, enzymatic arrays have been formed by attaching enzymes to surfaces. These enzyme-coated surfaces are used in biosensing to boost sensitivity, thanks to a much higher density of enzymes on a surface relative to in solution. They are also extremely useful for industrial chemical synthesis due to their ability to enhance reactions and how easily they can be integrated into the manufacturing processes. However, current methods to fabricate such enzymatic arrays are limited to surface-based forms. The proposed research aims to establish a conceptually different approach to create three-dimensional (3D) enzymatic arrays in the form of a bulk material rather than a surface. The proposed approach offers nanoscale control over the spatial arrangement and composition of 3D enzymatic arrays. Such arrays represent a new class of chemical materials with tailorable structure, and with modulated and enhanced reactivity. The proposed program seeks to address two key questions in creating these new enzymatic materials: how to synthesize the chemically active materials with control of their structure in 3D, and how to improve the chemical performance of enzymes through the use of novel 3D arrays. The proposed research aims to establish transformative capabilities in the area of designed chemical nanomaterials with potential applications in biosensing, reaction management, and chemical synthesis. Technical Abstract: The ability to organize enzymes and enzymatic cascades in three-dimensions (3D) with a nanoscale control over the placement of individual enzymes can open new routes for creating chemically active materials and modulating reaction pathways. However, establishing such capabilities presents a significant challenge. The proposal seeks developing a versatile methodology to program assembly of enzymes, guided by DNA frames, into tailored 3D ordered arrays of nanoreactors with control over lattice type, unit cell spacing, ratio of individual enzymes, and relative layout of the chemically active materials. The proposed studies will apply new levels of structure organization of enzymes and enzymatic cascades into desired 3D organizations. Using model enzymatic cascades, the research will explore catalysis within a 3D network and effects of its modification by controlling local chemical environments of enzymes and a global structuring of nanoreactor arrays. The research program will integrate efforts in synthesis of DNA-enzyme modules and their assembly into 3D materials with structural and chemical analysis of formed arrays for exploration of the novel 3D catalytic networks. Synergistic network effects stemming from large scale, 3D organization of enzymes and ease of molecular transport though 3D arrays will be explored. The major objectives of the program include: (i) tailored control over 3D nanoreactor arrays; (ii) determination of local effects arising from enzyme-DNA integration and enzyme colocalizations in 3D; (iii) development of full spatial control over fabrication enzymatic materials, such as crystal system of nanoscale arrays, inter-enzyme spacing, ratio of enzymes, and nanoscale organization of cascades within arrays. The research aims to establish new methods for synthesis of novel classes of 3D nanoreactor arrays, to elucidate the structure-function relationship of networked chemical reactions and to develop ways for manipulating chemical pathways.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摘要:生物体内的生化反应以及许多传感和制造应用都是由一种特殊类型的生物分子——酶控制的。虽然对设计具有增强性能的新型酶的需求很大,但这是一项非常具有挑战性的任务,需要大量的计算和合成努力。还有另一种方法可以增强酶的化学活性,并使它们更方便地使用——通过将这些生物分子包装成阵列。这种包装也打开了处理和加工酶类似于传统材料的可能性。到目前为止,酶阵列是通过将酶附着在表面而形成的。这些酶涂层的表面用于生物传感,以提高灵敏度,这要归功于表面上的酶密度比溶液中的高得多。它们对工业化学合成也非常有用,因为它们能够增强反应,并且很容易集成到制造过程中。然而,目前制造这种酶阵列的方法仅限于基于表面的形式。拟议的研究旨在建立一种概念上不同的方法,以块状材料而不是表面的形式创建三维(3D)酶阵列。提出的方法提供了纳米级控制的空间排列和组成的三维酶阵列。这种阵列代表了一类新的化学材料,具有可定制的结构,并具有调制和增强的反应性。该计划旨在解决创造这些新型酶材料的两个关键问题:如何在三维结构中控制合成化学活性材料,以及如何通过使用新型3D阵列来提高酶的化学性能。提出的研究旨在建立设计化学纳米材料领域的变革能力,在生物传感、反应管理和化学合成方面具有潜在的应用。技术摘要:通过纳米级控制单个酶的位置,在三维(3D)中组织酶和酶级联的能力可以为创建化学活性材料和调节反应途径开辟新的途径。然而,建立这样的能力是一个重大的挑战。该提案寻求开发一种通用的方法来编程酶的组装,在DNA框架的指导下,通过控制晶格类型、单元细胞间距、单个酶的比例和化学活性材料的相对布局,将酶组装成定制的3D有序纳米反应器阵列。拟议的研究将应用酶的结构组织和酶级联到所需的三维组织的新水平。利用模型酶级联,该研究将通过控制酶的局部化学环境和纳米反应器阵列的全局结构来探索3D网络中的催化作用及其修饰效果。该研究计划将整合dna -酶模块的合成及其组装成3D材料的努力,并对形成的阵列进行结构和化学分析,以探索新的3D催化网络。协同网络效应源于大规模,酶的三维组织和易于通过三维阵列分子运输将被探索。该项目的主要目标包括:(i)对3D纳米反应器阵列的定制控制;(ii)在3D中确定酶- dna整合和酶共定位产生的局部效应;(iii)发展对制造酶材料的完全空间控制,如纳米级阵列的晶体系统,酶间间距,酶的比例,以及阵列内级联的纳米级组织。本研究旨在建立新型三维纳米反应器阵列的合成新方法,阐明网络化学反应的结构-功能关系,并开发操纵化学途径的方法。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reactive polymers guide nanoparticle clustering
  • DOI:
    10.1126/science.abd8183
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    O. Gang
  • 通讯作者:
    O. Gang
Designed and biologically active protein lattices.
  • DOI:
    10.1038/s41467-021-23966-4
  • 发表时间:
    2021-06-17
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Wang ST;Minevich B;Liu J;Zhang H;Nykypanchuk D;Byrnes J;Liu W;Bershadsky L;Liu Q;Wang T;Ren G;Gang O
  • 通讯作者:
    Gang O
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oleg Gang其他文献

Octo-diamond crystal of nanoscale tetrahedra with interchanging chiral motifs
具有交替手性图案的纳米级四面体八面体金刚石晶体
  • DOI:
    10.1038/s41563-025-02185-y
  • 发表时间:
    2025-03-24
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Fang Lu;Yugang Zhang;Tobias Dwyer;Aaron Michelson;Timothy C. Moore;Hanfei Yan;Kim Kisslinger;Honghu Zhang;Xiaobo Chen;Sharon C. Glotzer;Oleg Gang
  • 通讯作者:
    Oleg Gang
多素子パッシブMIMOにおけるMLD演算量低減法
多元件无源MIMO MLD计算量减少方法
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miho Tagawa;Oleg Gang;Takumi Isogai;Sakiko Nakada;Eri Akada;Shunta Harada;Toru Ujihara;本間尚樹
  • 通讯作者:
    本間尚樹
Oxide heterogrowth on ion-exfoliated thin-film complex oxide substrates
  • DOI:
    10.1016/j.tsf.2009.06.004
  • 发表时间:
    2009-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Tsung-Liang Chen;Angela Kou;Avishai Ofan;Ophir Gaathon;R.M. Osgood;Oleg Gang;Lakshmanan Vanamurthy;Sasha Bakhru;Hassaram Bakhru
  • 通讯作者:
    Hassaram Bakhru
Melting also on cooling
冷却时也会熔化
  • DOI:
    10.1038/nmat3344
  • 发表时间:
    2012-05-22
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Oleg Gang
  • 通讯作者:
    Oleg Gang
Encoding hierarchical 3D architecture through inverse design of programmable bonds
通过可编程键的逆向设计对分层 3D 架构进行编码
  • DOI:
    10.1038/s41563-025-02263-1
  • 发表时间:
    2025-07-09
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Jason S. Kahn;Brian Minevich;Aaron Michelson;Hamed Emamy;Jiahao Wu;Huajian Ji;Alexia Yun;Kim Kisslinger;Shuting Xiang;Nanfang Yu;Sanat K. Kumar;Oleg Gang
  • 通讯作者:
    Oleg Gang

Oleg Gang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oleg Gang', 18)}}的其他基金

NSF Convergence Accelerator Track M: Enabling novel photonic neuromorphic devices through bridging DNA-programmable assembly and nanofabrication
NSF 融合加速器轨道 M:通过桥接 DNA 可编程组装和纳米制造实现新型光子神经形态设备
  • 批准号:
    2344415
  • 财政年份:
    2024
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant

相似海外基金

Effects of Environmental Change on Microbial Self-organized Patterns in Antarctic Lakes
环境变化对南极湖泊微生物自组织模式的影响
  • 批准号:
    2333917
  • 财政年份:
    2024
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
CAS-Climate: Conference: Travel Grant for Participating in Water Research and Innovation Workshop Organized by the UNESCO Megacities Alliance for Water and Climate
CAS-气候:会议:参加联合国教科文组织水与气候特大城市联盟组织的水研究和创新研讨会的旅费补助
  • 批准号:
    2348284
  • 财政年份:
    2023
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Organized Nanochannel Materials from Biomolecular Magnetic Organic Frameworks-
合作研究:从生物分子磁性有机框架组织纳米通道材料-
  • 批准号:
    2303580
  • 财政年份:
    2023
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
TENSOR - Reliable biomeTric tEhNologies to asSist Police authorities in cOmbating terrorism and oRganized crime
TENSOR - 可靠的生物识别技术协助警察当局打击恐怖主义和有组织犯罪
  • 批准号:
    10065388
  • 财政年份:
    2023
  • 资助金额:
    $ 38.52万
  • 项目类别:
    EU-Funded
Using Innovative Machine Learning to Detect Organized Support and Opposition to E-cigarette Use Prevention Campaign Messaging on Twitter and TikTok
使用创新的机器学习来检测 Twitter 和 TikTok 上有组织的对电子烟使用预防运动消息的支持和反对
  • 批准号:
    10720700
  • 财政年份:
    2023
  • 资助金额:
    $ 38.52万
  • 项目类别:
Analysis, reaction, and functionalization of isolated molecules using molecular pits organized on substrates
使用基质上组织的分子凹坑对孤立分子进行分析、反应和功能化
  • 批准号:
    23K17929
  • 财政年份:
    2023
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Organized Nanochannel Materials from Biomolecular Magnetic Organic Frameworks-
合作研究:从生物分子磁性有机框架组织纳米通道材料-
  • 批准号:
    2303581
  • 财政年份:
    2023
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
Fabrication of large-area and well-organized molecular assemblies by flow
通过流动制造大面积且组织良好的分子组装体
  • 批准号:
    23H01702
  • 财政年份:
    2023
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Equipment: Facilitating Optical X-Ray Techniques for Research and Organized Training at Alabama State University (FOXTROT-ASU)
设备: 阿拉巴马州立大学 (FOXTROT-ASU) 促进光学 X 射线技术研究和组织培训
  • 批准号:
    2324575
  • 财政年份:
    2023
  • 资助金额:
    $ 38.52万
  • 项目类别:
    Standard Grant
Investigating the mechanism of self-organized cortical patterning in an artificial cortex
研究人工皮质中自组织皮质模式的机制
  • 批准号:
    10861462
  • 财政年份:
    2023
  • 资助金额:
    $ 38.52万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了