Collaborative Research: Organized Nanochannel Materials from Biomolecular Magnetic Organic Frameworks-

合作研究:从生物分子磁性有机框架组织纳米通道材料-

基本信息

  • 批准号:
    2303580
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Non-technical descriptionControlled transport of biomolecular ingredients during nanoscale filtration of solutions is a vital task for many applications in fine chemistry, pharmaceutical research, drug delivery, and other sophisticated purification and materials making processes. To date, random morphologies and poorly controlled porosity of paper-based materials have significantly prevented tailoring biomolecular transport and catalytic phenomena. Current bio-derived and synthetic materials possess random porous morphologies with wide distributions of functionalities and porosities that compromise their effective molecular transport and biocatalytic activity, especially in relationship to enantiotropic biological compounds. Therefore, deeper understanding of potentially strong and flexible membranes with long-range ordered low-dimensional structural elements is required to advance the fundamental knowledge of novel nanoporous bio-derived materials with inclusion of novel open pore organized materials with controlled and responsive channel organization. For this purpose, we suggest using peptide segments with well-defined ability for selective interactions including chiral-related transport and magnetic clusters/atoms for coordination of open unit cells with molecular pore dimensions. Moreover, external magnetic field can be explored to create larger-scale responsive materials with transport properties directed by its direction and strength. Experimental research will be guided and assisted by machine learning and computational approaches. Finally, the research project will provide interdisciplinary training to graduate and undergraduate students with diverse backgrounds in experimental and computational biomaterials science for advanced material and biomolecular industry.Technical descriptionThis proposal will consider novel classes of organized nanochannel biomolecular nanomaterials for understanding the design principles of efficient organized gel-like adaptive materials with enhanced porosity dimension and topological control, materials and energy transport, chiral biomolecules selection and storage/release, and prospective chiral biocatalytic templates. Numerous critical issues must be addressed in order to establish principles of assembly of low-defect bio-metal-organic frameworks (MOFs) such as problems with limited unit sizes and pores due to the very short peptide sequences, small pore sizes, limited symmetries achievable, and high concentration of defects for directional and responsive loading, transport or potential for enantiotropic selection and biocatalytical abilities. The major novel units that the team will synthesize, design, and study are biomolecular magnetic organic frameworks (BiMOFs) based upon biologically encoded peptides with metal-binding terminal groups for coordination with magnetic ions/clusters. The key fundamental question to be addressed is how the guided co-assembly of functional biomolecular elements can be introduced as a tool for directed construction of large-scale organized hierarchical materials with stable and precisely controlled morphology of pore dimensions, channel topology, continuity, and chirality, and adaptive ionic and mass/energy transport properties. Design of biologically encoded magnetic bio-framework unit cells and biomolecular crystals of different symmetries and dimensions will be explored via site-specific metal-peptide coordination with tailored unit cell parameters, pore dimensions, channel dimensionalities, magnetic moment configuration, pores and microcrystal stability, and restructuring abilities of large-sized pores with biomolecular selectivity and chirality. The experimental work will be guided by theory, machine learning, and large-scale molecular simulations to understand the underlying scientific principles. The proposed research will leverage multi-scale modeling and machine learning powered by experimental verification to develop “technology-specific” rules for the design and assembly of robust but adaptive nanochannel BiMOF architectures with inherent ability to reconfigure. The work can enhance fundamental understanding of complex trasport phenomena in organized multi-phase nanomaterials with long-range organized assembly of nanocrystals and nanosheets. Finally, the PI’s mini-workshops Homecoming Series: Life and Career will be used to facilitate student readiness by interacting with former students and post-docs invited to visit their alma mater who enjoy successful careers in industry, national labs, and academia. This project will provide teaching the integration of experimental, computational, and data science tools; specifically, project-based modules will be designed and incorporated into upper-level courses and distributed through nanoHUB.This project is jointly funded by the Biomaterials (BMAT) and the Metals and Metallic Nanostructures (MMN) Programs of the Division of Materials Research (DMR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性预防在纳米级溶液过滤过程中,生物分子成分的受控运输对于精细化学、药物研究、药物输送和其他复杂的纯化和材料制造过程中的许多应用来说是一项至关重要的任务。迄今为止,纸基材料的随机形态和控制不良的孔隙率已经显著地阻止了定制生物分子运输和催化现象。目前的生物衍生和合成材料具有无规多孔形态,具有宽分布的官能度和孔隙度,这损害了它们的有效分子运输和生物催化活性,特别是与对映体生物化合物的关系。因此,需要对具有长程有序低维结构元件的潜在的强的和柔性的膜的更深入的理解,以推进新型纳米多孔生物衍生材料的基础知识,包括具有受控和响应性通道组织的新型开孔组织材料。 为此,我们建议使用具有明确的选择性相互作用能力的肽段,包括手性相关的运输和磁性簇/原子,用于与分子孔尺寸的开放单元格的协调。 此外,可以探索外部磁场以创建具有由其方向和强度引导的输运性质的更大尺度的响应材料。实验研究将由机器学习和计算方法指导和协助。 最后,本研究计划将提供跨学科的培训,研究生和本科生与不同背景的实验和计算生物材料科学的先进材料和生物分子industry.Technical promisationThis建议将考虑新类的有组织的纳米通道生物分子纳米材料的理解有效的有组织的凝胶状自适应材料的设计原则,增强孔隙度尺寸和拓扑控制,材料和能量传输、手性生物分子选择和储存/释放以及前瞻性手性生物催化模板。为了建立低缺陷生物金属有机框架(MOF)的组装原理,必须解决许多关键问题,例如由于非常短的肽序列而导致的有限单元尺寸和孔的问题、小孔径、可实现的有限对称性以及用于定向和响应性装载、运输或对映选择和生物催化能力的潜力的高浓度缺陷。该团队将合成,设计和研究的主要新单元是基于生物编码肽的生物分子磁性有机框架(BiMOFs),该生物编码肽具有金属结合端基,用于与磁性离子/簇配位。要解决的关键的基本问题是如何引导的功能生物分子元件的共组装可以被引入作为一种工具,用于大规模的有组织的分层材料的定向建设与稳定和精确控制的形态的孔尺寸,通道拓扑结构,连续性,和手性,和自适应离子和质量/能量传输性能。将通过位点特异性金属肽配位,利用定制的晶胞参数、孔隙尺寸、通道维度、磁矩配置、孔隙和微晶稳定性,探索生物编码的磁性生物框架晶胞和不同对称性和尺寸的生物分子晶体的设计。具有生物分子选择性和手性的大孔的重组能力。实验工作将以理论、机器学习和大规模分子模拟为指导,以了解潜在的科学原理。拟议的研究将利用多尺度建模和由实验验证提供动力的机器学习来开发“特定技术”规则,用于设计和组装具有固有重新配置能力的稳健但自适应的纳米通道BiMOF架构。 这项工作可以增强对有序多相纳米材料中复杂输运现象的基本理解,这些纳米材料具有纳米晶体和纳米片的长程有序组装。最后,PI的小型研讨会返校系列:生活和职业将被用来促进学生准备通过与前学生和博士后邀请访问他们的阿尔马谁享有成功的职业生涯在工业,国家实验室和学术界互动。该项目将提供实验,计算和数据科学工具的整合教学;具体地说,基于项目的模块将被设计和整合到高级课程中,并通过nanoHUB进行分发。该项目由材料研究部的生物材料(BMAT)和金属和金属纳米结构(MMN)计划共同资助该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vladimir Tsukruk其他文献

Changes of liquid-crystalline polymer structure with temperature
  • DOI:
    10.1007/bf01045338
  • 发表时间:
    1984-06-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Vladimir Tsukruk;Valery Shilov;Oksana Lokhonya;Yury Lipatov
  • 通讯作者:
    Yury Lipatov

Vladimir Tsukruk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vladimir Tsukruk', 18)}}的其他基金

Assembly of Novel Branched Ionic Polymers: Chirality Induction and 2D Heterostructures
新型支化离子聚合物的组装:手性感应和二维异质结构
  • 批准号:
    2404081
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Tailored Molecular Transport In Low-Dimensional Hybrid Materials From 1D Nanocrystals And 2D Nanosheets
一维纳米晶体和二维纳米片低维混合材料中的定制分子传输
  • 批准号:
    2202907
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Synthesis and Assembly 2D Heterostructured Hybrid Stacks
合成和组装 2D 异质结构混合堆栈
  • 批准号:
    2200366
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Bio-Optical Computing Devices: Multi-Valued Logic Elements via Photonic Bio-Materials
生物光学计算设备:通过光子生物材料的多值逻辑元件
  • 批准号:
    2203806
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Percolated morphologies of branched-star poly(ionic liquid)s
支化星型聚离子液体的渗透形貌
  • 批准号:
    2001968
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Synthesis and Reversible Self-Assembly of Monodisperse Plasmonic Nanorods Permanently Ligated with Photoresponsive Polymers
光响应聚合物永久连接单分散等离子体纳米棒的合成与可逆自组装
  • 批准号:
    1903957
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Flexible Bioenabled Chiral Lasing Materials
柔性生物赋能手性激光材料
  • 批准号:
    1803495
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
SYNTHESIS, ASSEMBLY, AND ELECTROCHROMIC BEHAVIOR OF NANOSTRUCTURED CONJUGATED POLYMER/METAL INTERFACES
纳米结构共轭聚合物/金属界面的合成、组装和电致变色行为
  • 批准号:
    1506046
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Responsive Branched Miktoarm and Ionic-Liquid Materials
响应性支化臂和离子液体材料
  • 批准号:
    1505234
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Nanostructured Surfaces with Selective Biotraps for Sensing
具有用于传感的选择性生物陷阱的纳米结构表面
  • 批准号:
    1401720
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Organized Nanochannel Materials from Biomolecular Magnetic Organic Frameworks-
合作研究:从生物分子磁性有机框架组织纳米通道材料-
  • 批准号:
    2303581
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Combining Self-organized Maps and Idealized Storm-scale Simulations to Investigate the Effect of Future Climate Change on Severe Convective Storms
合作研究:结合自组织地图和理想化风暴规模模拟来研究未来气候变化对强对流风暴的影响
  • 批准号:
    2209052
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201235
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Combining Self-organized Maps and Idealized Storm-scale Simulations to Investigate the Effect of Future Climate Change on Severe Convective Storms
合作研究:结合自组织地图和理想化风暴规模模拟来研究未来气候变化对强对流风暴的影响
  • 批准号:
    2209699
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: MEMS from Organized Mesoscale Architectures of Carbon Nanotubes
合作研究:来自碳纳米管有序介观结构的 MEMS
  • 批准号:
    0424416
  • 财政年份:
    2004
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: MEMS from Organized Mesoscale Architectures of Carbon Nanotubes
合作研究:来自碳纳米管有序介观结构的 MEMS
  • 批准号:
    0424322
  • 财政年份:
    2004
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Self-Organized Criticality, Blackouts and Disruptions in Power and Communication Systems
合作研究:电力和通信系统中的自组织临界、停电和中断
  • 批准号:
    0085647
  • 财政年份:
    2000
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-organized Criticality Blackouts and Disruptions in Power and Communications System
合作研究:电力和通信系统的自组织临界停电和中断
  • 批准号:
    0085711
  • 财政年份:
    2000
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research on Organized Group Influence on Federal Judicial Nominations
有组织的群体对联邦司法提名影响的合作研究
  • 批准号:
    8822932
  • 财政年份:
    1989
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了