Geometric Problems Involving Scalar Curvature
涉及标量曲率的几何问题
基本信息
- 批准号:1906423
- 负责人:
- 金额:$ 15.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
General Relativity is Einstein's theory of gravity that interprets gravity as a consequence of the curvature of spacetime. The theory predicts the existence of black holes via solutions to the Einstein equation. The first image of a black hole, recently obtained by astronomers using Event Horizon Telescope (EHT), has given remarkable evidence to the accuracy of this theory. The aim of this proposal is to investigate the geometry of space regions in general relativity, which in particular include regions surrounding a black hole. Results from this project will shed new light on the gravitational energy confined in a finite region, as well as the contribution of black holes to such quasi-local energy.In geometric terms, the PI aims at studying manifolds with non-negative scalar curvature, with boundary. The goal is to obtain new understanding of the interaction among scalar curvature, boundary mean curvature, interior minimal surfaces, volume of compact manifolds, and mass of asymptotically flat manifolds. The PI willl also establish a Poincare-type inequality on the boundary of compact manifolds with non-negative scalar curvature. The PI will employ geometric and analytic methods from calculus of variation and partial differential equations to achieve these goals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
广义相对论是爱因斯坦的引力理论,它将引力解释为时空弯曲的结果。该理论通过爱因斯坦方程的解预测了黑洞的存在。最近天文学家使用事件视界望远镜(EHT)获得的第一张黑洞图像为这一理论的准确性提供了显着的证据。这个提议的目的是研究广义相对论中空间区域的几何,特别是包括黑洞周围的区域。这个项目的结果将为有限区域内的引力能以及黑洞对这种准局部能量的贡献提供新的线索。在几何方面,PI旨在研究具有非负标量曲率的流形,边界。目标是获得新的理解之间的相互作用的标量曲率,边界平均曲率,内部极小曲面,体积的紧致流形,和质量的渐近平坦流形。PI还将在具有非负数量曲率的紧致流形的边界上建立一个Poincare型不等式。PI将采用变分法和偏微分方程的几何和分析方法来实现这些目标。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonexistence of NNSC fill-ins with large mean curvature
- DOI:10.1090/proc/15400
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:P. Miao
- 通讯作者:P. Miao
Mass and Riemannian polyhedra
质量和黎曼多面体
- DOI:10.1016/j.aim.2022.108287
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Miao, Pengzi;Piubello, Annachiara
- 通讯作者:Piubello, Annachiara
Capacity, quasi-local mass, and singular fill-ins
- DOI:10.1515/crelle-2019-0040
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:Christos Mantoulidis;P. Miao;Luen-Fai Tam
- 通讯作者:Christos Mantoulidis;P. Miao;Luen-Fai Tam
Rigidity of Riemannian Penrose inequality with corners and its implications
- DOI:10.1016/j.jfa.2021.109231
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Siyuan Lu;P. Miao
- 通讯作者:Siyuan Lu;P. Miao
Mass, Capacitary Functions, and the Mass-to-Capacity Ratio
质量、电容函数和质量容量比
- DOI:10.1007/s42543-023-00071-7
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Miao, Pengzi
- 通讯作者:Miao, Pengzi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pengzi Miao其他文献
On the capacity of surfaces in manifolds with nonnegative scalar curvature THANKSREF="*" ID="*"The research of the first author was partially supported by NSF grant DMS-0533551. The research of the second author was partially supported by an Early Career Researcher Grant of Monash University.
- DOI:
10.1007/s00222-007-0102-x - 发表时间:
2008-01-09 - 期刊:
- 影响因子:3.600
- 作者:
Hubert Bray;Pengzi Miao - 通讯作者:
Pengzi Miao
Isometric embeddings of 2-spheres into Schwarzschild manifolds
- DOI:
10.1007/s00229-015-0782-2 - 发表时间:
2015-08-19 - 期刊:
- 影响因子:0.600
- 作者:
Armando J. Cabrera Pacheco;Pengzi Miao - 通讯作者:
Pengzi Miao
Pengzi Miao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pengzi Miao', 18)}}的其他基金
International Conference on Mathematical Relativity
国际数学相对论会议
- 批准号:
1856467 - 财政年份:2019
- 资助金额:
$ 15.42万 - 项目类别:
Standard Grant
相似海外基金
LEAPS-MPS: Computational Methods for Many-Physics Problems Involving Multi-Material Flows
LEAPS-MPS:涉及多材料流的许多物理问题的计算方法
- 批准号:
2302080 - 财政年份:2023
- 资助金额:
$ 15.42万 - 项目类别:
Standard Grant
Computational methods involving differential equations in computer graphics, machine learning and inference problems
计算机图形学、机器学习和推理问题中涉及微分方程的计算方法
- 批准号:
RGPIN-2022-03327 - 财政年份:2022
- 资助金额:
$ 15.42万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for coupled problems involving reaction-diffusion equations
涉及反应扩散方程的耦合问题的数值方法
- 批准号:
RGPIN-2019-06855 - 财政年份:2022
- 资助金额:
$ 15.42万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for coupled problems involving reaction-diffusion equations
涉及反应扩散方程的耦合问题的数值方法
- 批准号:
RGPIN-2019-06855 - 财政年份:2021
- 资助金额:
$ 15.42万 - 项目类别:
Discovery Grants Program - Individual
Toward High-Order Numerical Methods for Problems Involving Moving Interfaces, Jumps and Conserved Quantities
针对涉及移动界面、跳跃和守恒量问题的高阶数值方法
- 批准号:
RGPIN-2016-04628 - 财政年份:2021
- 资助金额:
$ 15.42万 - 项目类别:
Discovery Grants Program - Individual
LEAPS-MPS: Computational Methods for Many-Physics Problems Involving Multi-Material Flows
LEAPS-MPS:涉及多材料流的许多物理问题的计算方法
- 批准号:
2137934 - 财政年份:2021
- 资助金额:
$ 15.42万 - 项目类别:
Standard Grant
Toward High-Order Numerical Methods for Problems Involving Moving Interfaces, Jumps and Conserved Quantities
针对涉及移动界面、跳跃和守恒量问题的高阶数值方法
- 批准号:
RGPIN-2016-04628 - 财政年份:2020
- 资助金额:
$ 15.42万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for coupled problems involving reaction-diffusion equations
涉及反应扩散方程的耦合问题的数值方法
- 批准号:
RGPIN-2019-06855 - 财政年份:2020
- 资助金额:
$ 15.42万 - 项目类别:
Discovery Grants Program - Individual
Toward High-Order Numerical Methods for Problems Involving Moving Interfaces, Jumps and Conserved Quantities
针对涉及移动界面、跳跃和守恒量问题的高阶数值方法
- 批准号:
RGPIN-2016-04628 - 财政年份:2019
- 资助金额:
$ 15.42万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Stochastic Forward and Inverse Problems Involving Dynamical Systems
职业:涉及动力系统的随机正向和逆向问题
- 批准号:
1847144 - 财政年份:2019
- 资助金额:
$ 15.42万 - 项目类别:
Continuing Grant