Stochastic Analysis and Numerics for Large Scale Dynamical Systems, with Applications
大规模动力系统的随机分析和数值及其应用
基本信息
- 批准号:1908665
- 负责人:
- 金额:$ 43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The increasing complexity of banking systems and other large-scale networks subject to random effects, incomplete or partial observations, and systemic risk, put increasing demands for new and efficient mathematical tools for their analysis. This award addresses three projects in the stochastic and computational analysis of "large-scale" dynamical systems, in the sense that they are set in spaces of very high dimensions or involve the interactions of a large number of participating agents in the system. The first project will focus on the development of efficient numerical schemes for partial differential equations (PDEs) with a large number of spatial dimensions. These schemes could have a significant impact on computation-oriented financial instruments, such as model-based trading algorithms involving very-large portfolios. The second project and third projects study the structures of large financial systems that are interacting in a centralized (mean-field) and non-centralized (network) manner, respectively. The results will provide tools for the measurement and management of systemic risk, particularly default contagion for large scale interbank lending markets, both for individual investors and for regulators. The award will also result in the involvement and training of graduate students and dissemination through journal publications and conferences. The first project will develop efficient Monte-Carlo methods for high-dimensional PDEs and path-dependent PDEs (PPDEs). These schemes are expected to be efficient when the dimension of the equations is allowed to be in the hundreds or higher, hence essentially breaking the notorious "curse of dimensionality" that has been baffling the numerical analysts and computer scientists for decades. The second project explore various theoretical issues as well as several practical problems in stochastic game/control theory and quantitative finance under the general framework of master equations and their variations. This project will utilize several recently developed technical tools, including the time consistency principle and the dynamic utility approach. The third project on dynamic systemic risk investigates a complex network in which the contagion effect among banks are described in a time-consistent, and non-centralized manner. By considering the state space of probability measures, the dynamical movements of networks can be described by measure-valued SDEs, while the systemic risk is characterized by certain master equations. All projects in the proposed research have direct or indirect connections to applied fields, especially to stochastic finance/actuarial sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
受随机效应、不完全或部分观察以及系统性风险影响的银行系统和其他大型网络的复杂性日益增加,这就对用于分析它们的新的、高效的数学工具提出了越来越高的要求。该奖项涉及“大规模”动力系统的随机和计算分析方面的三个项目,从这个意义上讲,它们设置在非常高维度的空间中,或者涉及系统中大量参与主体的相互作用。第一个项目将集中于开发具有大量空间维度的偏微分方程(PDE)的有效数值格式。这些方案可能对面向计算的金融工具产生重大影响,例如涉及超大型投资组合的基于模型的交易算法。第二个项目和第三个项目分别研究以集中式(平均场)和非集中式(网络)方式相互作用的大型金融系统的结构。研究结果将为衡量和管理系统性风险提供工具,尤其是对个人投资者和监管者而言,大规模银行间拆借市场的违约蔓延。该奖项还将导致研究生的参与和培训,并通过期刊出版物和会议进行传播。第一个项目将为高维偏微分方程组和路径相关偏微分方程组开发高效的蒙特卡罗方法。当方程的维度被允许在数百或更高时,这些方案预计将是有效的,从而从根本上打破几十年来困扰数值分析师和计算机科学家的臭名昭著的“维度诅咒”。第二个项目在主方程及其变体的一般框架下,探索随机博弈/控制理论和定量金融中的各种理论问题和几个实际问题。该项目将利用最近开发的几种技术工具,包括时间一致性原则和动态效用方法。第三个项目关于动态系统性风险,研究了一个复杂网络,其中银行间的传染效应以时间一致和非集中的方式描述。通过考虑概率度量的状态空间,网络的动态运动可以用度量值SDE来描述,而系统风险则可以用一定的主方程来描述。建议研究中的所有项目都与应用领域有直接或间接的联系,特别是与随机金融/精算科学有关。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Path dependent Feynman–Kac formula for forward backward stochastic Volterra integral equations
- DOI:10.1214/21-aihp1158
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Hanxiao Wang;J. Yong;Jianfeng Zhang
- 通讯作者:Hanxiao Wang;J. Yong;Jianfeng Zhang
Time-Consistent Conditional Expectation Under Probability Distortion
概率畸变下的时间一致条件期望
- DOI:10.1287/moor.2020.1101
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Ma, Jin;Wong, Ting-Kam Leonard;Zhang, Jianfeng
- 通讯作者:Zhang, Jianfeng
Fully nonlinear stochastic and rough PDEs: Classical and viscosity solutions
全非线性随机和粗糙偏微分方程:经典和粘度解决方案
- DOI:10.1186/s41546-020-00049-8
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Buckdahn, Rainer;Keller, Christian;Ma, Jin;Zhang, Jianfeng
- 通讯作者:Zhang, Jianfeng
Viscosity solutions for obstacle problems on Wasserstein space
Wasserstein 空间障碍物问题的粘度解
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:2.2
- 作者:M. Talbi, N. Touzi
- 通讯作者:M. Talbi, N. Touzi
Optimal Investment and Dividend Strategy under Renewal Risk Model
更新风险模型下的最优投资与股利策略
- DOI:10.1137/20m1317724
- 发表时间:2021
- 期刊:
- 影响因子:2.2
- 作者:Bai, Lihua;Ma, Jin
- 通讯作者:Ma, Jin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianfeng Zhang其他文献
Blue light-emitting diodes based on halide perovskites: Recent advances and strategies
基于卤化物钙钛矿的蓝色发光二极管:最新进展和策略
- DOI:
10.1016/j.mattod.2021.10.023 - 发表时间:
2021-11 - 期刊:
- 影响因子:24.2
- 作者:
Jianfeng Zhang;Lin Wang;Xiaoyu Zhang;Guohua Xie;Guohua Jia;Jianhua Zhang;Xuyong Yang - 通讯作者:
Xuyong Yang
Mathematical Theory for General Moral Hazard Problems
一般道德风险问题的数学理论
- DOI:
10.1007/978-3-642-14200-0_5 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jakša Cvitanić;Jianfeng Zhang - 通讯作者:
Jianfeng Zhang
Forward-Backward SDEs
前向-后向 SDE
- DOI:
10.1007/978-1-4939-7256-2_8 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jianfeng Zhang - 通讯作者:
Jianfeng Zhang
Phosphorus Fertilization Modes Affect Crop Yield, Nutrient Uptake, and Soil Biological Properties in the Rice–Wheat Cropping System
磷肥模式影响稻麦作物产量、养分吸收和土壤生物学特性
- DOI:
10.2136/sssaj2011.0324 - 发表时间:
2013 - 期刊:
- 影响因子:2.9
- 作者:
Guangyue Guan;S. Tu;Hailan Li;Jun;Jianfeng Zhang;S. Wen;Li Yang - 通讯作者:
Li Yang
spanDetecting Spammers in Microblogs/span
检测微博中的垃圾邮件发送者
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.6
- 作者:
Zhaoyun Ding;Jianfeng Zhang;Jia Yan;Li He;Bin Zhou - 通讯作者:
Bin Zhou
Jianfeng Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianfeng Zhang', 18)}}的其他基金
Dynamical Approaches for Some Complex Stochastic Systems
一些复杂随机系统的动力学方法
- 批准号:
2205972 - 财政年份:2022
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Some Topics on Path Dependent Partial Differential Equations and Stochastic Differential Equations
关于路径相关偏微分方程和随机微分方程的一些专题
- 批准号:
1413717 - 财政年份:2014
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Collaborative Research: Applications of Stochastic Analysis to Models of Multi-Agent Interactions
协作研究:随机分析在多智能体交互模型中的应用
- 批准号:
1008873 - 财政年份:2010
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Collaborative Research: Theory, Numerics and Applications of Optimal Contracting in Stochastic Differential Equations Models
合作研究:随机微分方程模型中最优收缩的理论、数值和应用
- 批准号:
0631366 - 财政年份:2007
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Numerics and Mathematical Analysis for micro-phase separated patterns of polymer nanoparticles
聚合物纳米颗粒微相分离模式的数值和数学分析
- 批准号:
23K03209 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamical Systems: Modelling, Analysis, and Numerics
动力系统:建模、分析和数值
- 批准号:
RGPIN-2020-03954 - 财政年份:2022
- 资助金额:
$ 43万 - 项目类别:
Discovery Grants Program - Individual
Dynamical Systems: Modelling, Analysis, and Numerics
动力系统:建模、分析和数值
- 批准号:
RGPIN-2020-03954 - 财政年份:2021
- 资助金额:
$ 43万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Analysis and Numerics for the Dynamics of Fluids under Magnetic Forces
职业:磁力下流体动力学的分析和数值模拟
- 批准号:
2042454 - 财政年份:2021
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
Dynamical Systems: Modelling, Analysis, and Numerics
动力系统:建模、分析和数值
- 批准号:
RGPIN-2020-03954 - 财政年份:2020
- 资助金额:
$ 43万 - 项目类别:
Discovery Grants Program - Individual
Optimal control problems in mathematical biology: Modelling, analysis and numerics
数学生物学中的最优控制问题:建模、分析和数值
- 批准号:
2435611 - 财政年份:2020
- 资助金额:
$ 43万 - 项目类别:
Studentship
Applications of Rough Differential Systems: Theoretical Physics, Data Analysis, and Numerics
粗微分系统的应用:理论物理、数据分析和数值
- 批准号:
1952966 - 财政年份:2020
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
Dynamical systems: Analysis, Modelling, and Numerics
动力系统:分析、建模和数值
- 批准号:
RGPIN-2015-05090 - 财政年份:2019
- 资助金额:
$ 43万 - 项目类别:
Discovery Grants Program - Individual
Dynamical systems: Analysis, Modelling, and Numerics
动力系统:分析、建模和数值
- 批准号:
RGPIN-2015-05090 - 财政年份:2018
- 资助金额:
$ 43万 - 项目类别:
Discovery Grants Program - Individual
Singular Limits and Gradient Flows: Analysis and Numerics
奇异极限和梯度流:分析和数值
- 批准号:
1811012 - 财政年份:2018
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant