Variational Problems in Geometry
几何变分问题
基本信息
- 批准号:1910496
- 负责人:
- 金额:$ 20.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research focuses on minimal surfaces, which are surfaces that locally minimize area. Classical examples of minimal surfaces can be obtained physically by immersing a wire frame into a soap solution and forming a soap film surface whose boundary is the wire frame. The theme of minimization permeates all of the natural sciences and minimal surfaces are thus an important model for several phenomena in nature. They have been linked to molecular engineering, materials science, and to the theory of black holes in general relativity. The proposed research aims to understand how such surfaces can be locally minimizing but not globally so and, moreover, how this can reveal the shape of the space they live in. Minimal submanifolds are critical points to the most fundamental variational problem in the geometry, that of minimizing area. They have been an essential object in mathematical research since the work of Euler and Lagrange, and many of the ideas developed in their study turned out to be key in the development of calculus of variations, nonlinear PDEs, and mathematical physics. In addition, minimal submanifolds have also been a crucial method in understanding curvature, yielding many striking applications to geometry, low-dimensional topology, and general relativity. Recent advances on the existence theory of minimal hypersurfaces suggest that this is a very exciting time for the field. A major component of the proposed research is to investigate new Morse index estimates in light of the new existence results. One goal is to study what are the geometrical and topological properties of the new minimal hypersurfaces produced by the theory, which in turn can lead to several applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建议的研究重点是最小曲面,这是表面,局部最小化面积。 最小曲面的经典例子可以通过将线框浸入肥皂溶液中并形成以线框为边界的肥皂膜表面来物理地获得。 极小化的主题渗透到所有的自然科学中,极小曲面因此是自然界中几种现象的重要模型。它们与分子工程、材料科学和广义相对论中的黑洞理论有关。 这项研究旨在了解这些表面如何能够局部最小化而不是全局最小化,以及如何揭示它们所居住的空间的形状。极小子流形是几何学中最基本的变分问题,即极小化面积问题的临界点。 自欧拉和拉格朗日的工作以来,它们一直是数学研究中的重要对象,在他们的研究中发展的许多思想被证明是变分法,非线性偏微分方程和数学物理发展的关键。 此外,极小子流形也是理解曲率的重要方法,在几何学、低维拓扑学和广义相对论中产生了许多引人注目的应用。 最小超曲面的存在性理论的最新进展表明,这是一个非常令人兴奋的时间领域。拟议的研究的一个主要组成部分是调查新的莫尔斯指数估计,根据新的存在结果。 一个目标是研究由该理论产生的新的最小超曲面的几何和拓扑性质,这反过来又可以导致几个应用。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Davi Maximo其他文献
Almost-rigidity and the extinction time of positively curved Ricci flows
- DOI:
10.1007/s00208-016-1494-y - 发表时间:
2016-11-18 - 期刊:
- 影响因子:1.400
- 作者:
Richard H. Bamler;Davi Maximo - 通讯作者:
Davi Maximo
Davi Maximo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Davi Maximo', 18)}}的其他基金
Variational and Parabolic Phenomena in Differential Geometry
微分几何中的变分和抛物线现象
- 批准号:
1737006 - 财政年份:2016
- 资助金额:
$ 20.68万 - 项目类别:
Standard Grant
Variational and Parabolic Phenomena in Differential Geometry
微分几何中的变分和抛物线现象
- 批准号:
1512574 - 财政年份:2015
- 资助金额:
$ 20.68万 - 项目类别:
Standard Grant
相似海外基金
Variational problems in physics, economics and geometry
物理学、经济学和几何中的变分问题
- 批准号:
RGPIN-2020-04162 - 财政年份:2022
- 资助金额:
$ 20.68万 - 项目类别:
Discovery Grants Program - Individual
Analysis of variational problems in topological geometry using Sobolev manifolds
使用 Sobolev 流形分析拓扑几何中的变分问题
- 批准号:
21K18583 - 财政年份:2021
- 资助金额:
$ 20.68万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
New methods for variational problems in Riemannian geometry
黎曼几何中变分问题的新方法
- 批准号:
RGPIN-2017-06068 - 财政年份:2021
- 资助金额:
$ 20.68万 - 项目类别:
Discovery Grants Program - Individual
Variational problems in physics, economics and geometry
物理学、经济学和几何中的变分问题
- 批准号:
RGPIN-2020-04162 - 财政年份:2021
- 资助金额:
$ 20.68万 - 项目类别:
Discovery Grants Program - Individual
New methods for variational problems in Riemannian geometry
黎曼几何中变分问题的新方法
- 批准号:
RGPIN-2017-06068 - 财政年份:2020
- 资助金额:
$ 20.68万 - 项目类别:
Discovery Grants Program - Individual
Multisymplectic Geometry and Geometric Numerical Integrator for Variational Problems
变分问题的多辛几何和几何数值积分器
- 批准号:
20K14365 - 财政年份:2020
- 资助金额:
$ 20.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Variational problems in physics, economics and geometry
物理学、经济学和几何中的变分问题
- 批准号:
RGPIN-2020-04162 - 财政年份:2020
- 资助金额:
$ 20.68万 - 项目类别:
Discovery Grants Program - Individual
New methods for variational problems in Riemannian geometry
黎曼几何中变分问题的新方法
- 批准号:
RGPIN-2017-06068 - 财政年份:2019
- 资助金额:
$ 20.68万 - 项目类别:
Discovery Grants Program - Individual
New methods for variational problems in Riemannian geometry
黎曼几何中变分问题的新方法
- 批准号:
RGPIN-2017-06068 - 财政年份:2018
- 资助金额:
$ 20.68万 - 项目类别:
Discovery Grants Program - Individual
New methods for variational problems in Riemannian geometry
黎曼几何中变分问题的新方法
- 批准号:
RGPIN-2017-06068 - 财政年份:2017
- 资助金额:
$ 20.68万 - 项目类别:
Discovery Grants Program - Individual