Collaborative Research: Understanding Run-In and Superlubricity of Diamond-Like Carbon Coatings from a Tribochemical Perspective

合作研究:从摩擦化学角度理解类金刚石碳涂层的磨合和超润滑性

基本信息

  • 批准号:
    1912210
  • 负责人:
  • 金额:
    $ 5.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Smartphone screens are an impressive example of how new technologies often rely on surface engineering, such as the ability to create durable, hard and slippery surfaces. Many key economic sectors can benefit from minimized wear and friction of surfaces, including the automotive, medical device, computer component and defense sectors, so that this research directly and positively impacts the economic welfare and national security of the United States. Recently, a hard surface coating known as diamond-like carbon (DLC) has been found to achieve an extreme level of slipperiness called "superlubricity". This desirable property is, however, very sensitive to environmental conditions such as the amount of water or hydrogen in the surrounding atmosphere. Sensitivity to environmental conditions limits the effectiveness of the coating for many potential applications. This collaborative research aims to understand the chemical reactions that govern superlubricity in DLC and to discover ways to extend its high performance to a wider range of conditions. The collaborators at Penn State and St. Olaf College specialize in measuring friction using different state-of-the-art methods that complement each other. The broader impacts of this study extend to training the next generation of scientists in the United States by supporting student participation in the research. Educational activities will include outreach for underrepresented minority recruitment at Penn State and undergraduates at St. Olaf, instruction of undergraduates in friction-related physics at St. Olaf, instruction in DLC surface properties for a graduate course at Penn State, surface characterization tutorials in professional conferences, and student participation in international collaborations. Due to its amorphous nature, the carbon atoms in DLC have very broad distributions in bond length and angle. The covalent bonds in DLC are formed during the high-energy deposition process and cannot be relaxed or rearranged without annealing at extremely high temperatures. This means that the lengths and angles of many bonds in DLC deviate significantly from the minimum-energy structure of ideal sp2 and sp3 hybridization. Those bonds are weaker and more reactive compared to the bonds with parameters close to the ideal structures. Such broad distributions in bond parameters and reactivities are intrinsic parameters specific to each DLC coating and its deposition conditions. The main thesis of this study is that the presence of highly-distorted carbon-carbon bonds facilitates a mechanochemically-induced polymorphic transition to graphitic domains at the shearing interface. Under this hypothesis, the run-in process can be attributed to the shear-induced mechanochemical transformation of the distorted carbon networks to graphitic (or graphene-like) domains. The transformation process will also be affected by reactions with molecules impinging from the gas phase. These surface reactions with surrounding gas molecules are extrinsic parameters affecting the run-in and superlubricity of DLC. A mechanically-assisted thermal activation (Arrhenius-type) model will be combined with structural characterization to study how the intrinsic and extrinsic parameters facilitate or hamper the shear-induced mechanochemical transformation of the DLC interface to graphitic domains with ultra-low shear resistance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
智能手机屏幕是一个令人印象深刻的例子,表明新技术通常依赖于表面工程,例如创造耐用,坚硬和光滑表面的能力。许多关键的经济部门可以从最小化的表面磨损和摩擦中受益,包括汽车,医疗设备,计算机部件和国防部门,因此这项研究直接和积极地影响美国的经济福利和国家安全。最近,一种被称为类金刚石碳(DLC)的硬质表面涂层被发现可以达到一种称为“超润滑性”的极端光滑程度。然而,这种所需的性质对环境条件如周围大气中的水或氢的量非常敏感。对环境条件的敏感性限制了涂层在许多潜在应用中的有效性。这项合作研究旨在了解控制DLC超润滑性的化学反应,并发现将其高性能扩展到更广泛条件的方法。 宾夕法尼亚州立大学和圣奥拉夫学院的合作者专门使用不同的最先进的方法来测量摩擦,这些方法相互补充。这项研究的更广泛影响延伸到通过支持学生参与研究来培训美国的下一代科学家。教育活动将包括外展代表性不足的少数民族招聘在宾夕法尼亚州立大学和本科生在圣奥拉夫,本科生在摩擦相关的物理教学在圣奥拉夫,在宾夕法尼亚州立大学的研究生课程的DLC表面性能指令,表面表征教程专业会议,并在国际合作的学生参与。由于其无定形性质,DLC中的碳原子在键长和键角上具有非常宽的分布。DLC中的共价键是在高能沉积过程中形成的,如果不在极高的温度下退火,就不能松弛或重排。这意味着DLC中许多键的长度和角度明显偏离理想sp2和sp3杂化的最小能量结构。与参数接近理想结构的键相比,这些键更弱,反应性更强。键参数和反应性的这种宽分布是每个DLC涂层及其沉积条件特有的固有参数。本研究的主要论点是,高度扭曲的碳-碳键的存在下,有利于机械化学诱导的多晶型过渡到石墨域在剪切界面。在此假设下,磨合过程可以归因于扭曲的碳网络向石墨(或石墨烯样)域的剪切诱导的机械化学转化。转化过程还将受到与来自气相的分子撞击的反应的影响。这些与周围气体分子的表面反应是影响DLC磨合和超润滑性的外在参数。一种机械辅助的热活化(Arabidius型)模型将与结构表征相结合,以研究内部和外部参数如何促进或阻碍DLC界面向具有超微结构的石墨域的剪切诱导机械化学转化。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Empirical relationship between interfacial shear stress and contact pressure in micro- and macro-scale friction
  • DOI:
    10.1016/j.triboint.2020.106780
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    He, Xin;Liu, Zhong;Kim, Seong H.
  • 通讯作者:
    Kim, Seong H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Borovsky其他文献

Brian Borovsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Borovsky', 18)}}的其他基金

RUI/Collaborative Research: The Molecular Origins of Friction - A Study Across Velocity Regimes of Phosphonate Monolayers on Alternative MEMS-Type Surfaces
RUI/合作研究:摩擦的分子起源 - 替代 MEMS 型表面上磷酸盐单分子层速度范围的研究
  • 批准号:
    0758330
  • 财政年份:
    2009
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
MRI/RUI: Acquisition of a Nanoindenter for Molecular-Level Studies of Friction at Grinnell College
MRI/RUI:格林内尔学院购买纳米压痕仪用于分子水平摩擦研究
  • 批准号:
    0215609
  • 财政年份:
    2002
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325464
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
  • 批准号:
    2314272
  • 财政年份:
    2024
  • 资助金额:
    $ 5.18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了