Coherent Electron Control
相干电子控制
基本信息
- 批准号:1912504
- 负责人:
- 金额:$ 47.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Classical Mechanics tells us how bridges, cars, and other objects in our everyday world work. Quantum Mechanics tells us how electrons, atoms and other objects in the microscopic world work. We need to find a description of nature that works at the microscopic and macroscopic scales and everything in between. This is a century-old unsolved problem that is called the "Quantum Measurement Problem." Not only do we want to solve the problem, but we want to use "quantumness" at a larger scale, and not understanding the problem stops us from doing this. To solve this problem objects at an intermediate scale, in between the microscopic and macroscopic, need to be studied. This is what the project: "Coherent Electron Control" is aiming to do. Microscopic objects, electrons, are placed close to an everyday world object, a wall, so that the description of how the two interact is neither described by Quantum Mechanics, nor Classical Mechanics. New models and theories can be tested in this way. On the practical side, the interaction between electrons and walls has stopped the development of sensitive devices based on electrons, called electron interferometers. The walls destroy the useful quantum mechanical properties of the electrons. If this "decoherence" can be overcome, new electron devices can be constructed that measure, for example, small changes in magnetic fields, and may thus find application in the numerous areas of technology where magnetic fields play a key role.Electron diffraction from nanofabricated gratings will be used to split electron beams coherently into two parts. Walls will be placed close to the electron beams to partially decohere the electron beams. The electron beams are recombined and the measured amount of quantum mechanical interference tells us about the amount of decoherence. Four different existing microscopic theories have now been tested. Control of the decoherence will be explored by changing the wall from insulating copper oxide, to semi-conducting Gallium Arsenide, to conducting gold, and illuminating the walls with laser light and particles. The understanding gained will be used to control and reduce the decoherence and be applied to enlarge the size of existing electron interferometers. In this way it is attempted to construct the largest and most sensitive electron interferometer in the world. Patents will be pursued based on the new technology being developed and the inventions may be marketable. The research project provides experience to graduate students, undergraduate students and high school students in the new research area of free electron quantum optics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
经典力学告诉我们日常生活中的桥梁、汽车和其他物体是如何工作的。量子力学告诉我们微观世界中的电子、原子和其他物体是如何工作的。我们需要找到一种适用于微观和宏观尺度以及介于两者之间的一切尺度的自然描述。这是一个百年未解的难题,被称为“量子测量问题”。 我们不仅要解决问题,而且要在更大范围内使用“量子性”,不理解问题会阻止我们这样做。为了解决这个问题,需要研究介于微观和宏观之间的中间尺度的物体。这就是“相干电子控制”项目的目标。微观物体(电子)被放置在日常世界物体(墙壁)附近,因此量子力学和经典力学都无法描述两者如何相互作用。新的模型和理论可以通过这种方式进行测试。在实际方面,电子和墙壁之间的相互作用已经阻止了基于电子的敏感设备(称为电子干涉仪)的开发。这些壁破坏了电子有用的量子力学特性。如果可以克服这种“退相干”,就可以构建新的电子设备来测量磁场的微小变化,从而可以在磁场发挥关键作用的众多技术领域得到应用。来自纳米制造光栅的电子衍射将用于将电子束相干地分成两部分。墙壁将放置在靠近电子束的位置,以部分地使电子束退相干。电子束重新组合,测量到的量子力学干涉量告诉我们退相干量。现在已经测试了四种不同的现有微观理论。将通过将壁从绝缘氧化铜改为半导体砷化镓、导电金,并用激光和粒子照射壁来探索退相干的控制。所获得的理解将用于控制和减少退相干,并用于扩大现有电子干涉仪的尺寸。试图以此方式建造世界上最大、最灵敏的电子干涉仪。将根据正在开发的新技术以及可能具有市场价值的发明来申请专利。该研究项目为研究生、本科生和高中生提供自由电子量子光学新研究领域的经验。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Photofield electron emission from an optical fiber nanotip
光纤纳米尖端的光场电子发射
- DOI:10.1063/5.0014873
- 发表时间:2020
- 期刊:
- 影响因子:4
- 作者:Keramati, S.;Passian, A.;Khullar, V.;Batelaan, H.
- 通讯作者:Batelaan, H.
A proposed test of quantum dissipation theory using Kapitza–Dirac electron diffraction
使用卡皮查-狄拉克电子衍射对量子耗散理论进行的拟议测试
- DOI:10.1088/1367-2630/ac79c4
- 发表时间:2022
- 期刊:
- 影响因子:3.3
- 作者:Puente, Raul;Chen, Zilin;Batelaan, Herman
- 通讯作者:Batelaan, Herman
Surface plasmon enhanced fast electron emission from metallised fibre optic nanotips
- DOI:10.1088/1367-2630/aba85b
- 发表时间:2020-08-01
- 期刊:
- 影响因子:3.3
- 作者:Keramati,Sam;Passian,Ali;Batelaan,Herman
- 通讯作者:Batelaan,Herman
Comment on “Intensity Interference in a Coherent Spin-Polarized Electron Beam”
对“相干自旋偏振电子束中的强度干涉”的评论
- DOI:10.1103/physrevlett.127.229601
- 发表时间:2021
- 期刊:
- 影响因子:8.6
- 作者:Batelaan, Herman;Keramati, Sam;Gay, T. J.
- 通讯作者:Gay, T. J.
Non-Poissonian Ultrashort Nanoscale Electron Pulses
非泊松超短纳米级电子脉冲
- DOI:10.1103/physrevlett.127.180602
- 发表时间:2021
- 期刊:
- 影响因子:8.6
- 作者:Keramati, Sam;Brunner, Will;Gay, T. J.;Batelaan, Herman
- 通讯作者:Batelaan, Herman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Herman Batelaan其他文献
Tip-top imaging
顶尖成像
- DOI:
10.1038/446500a - 发表时间:
2007-03-28 - 期刊:
- 影响因子:48.500
- 作者:
Herman Batelaan;Kees Uiterwaal - 通讯作者:
Kees Uiterwaal
Herman Batelaan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Herman Batelaan', 18)}}的其他基金
Coherent Electron Control; Matter Optics with Intense Laser Light and Nanostructures
相干电子控制;
- 批准号:
0653182 - 财政年份:2007
- 资助金额:
$ 47.52万 - 项目类别:
Continuing Grant
Matter Optics with Intense Laser Light
强激光的物质光学
- 批准号:
0354940 - 财政年份:2004
- 资助金额:
$ 47.52万 - 项目类别:
Continuing Grant
Matter Optics with Intense Laser Light
强激光的物质光学
- 批准号:
0112578 - 财政年份:2001
- 资助金额:
$ 47.52万 - 项目类别:
Continuing Grant
相似国自然基金
Muon--electron转换过程的实验研究
- 批准号:11335009
- 批准年份:2013
- 资助金额:360.0 万元
- 项目类别:重点项目
相似海外基金
Coherent Control and Manipulation of Natural and Un-Natural Parity Contributions to Electron Impact Ionization from Laser-Excited Atoms.
自然和非自然宇称对激光激发原子电子碰撞电离的相干控制和操纵。
- 批准号:
EP/P00671X/1 - 财政年份:2017
- 资助金额:
$ 47.52万 - 项目类别:
Research Grant
Coherent control of electron-phonon coupled quantum system using interferometric transient reflectivity measurement
使用干涉瞬态反射率测量对电子声子耦合量子系统进行相干控制
- 批准号:
17H02797 - 财政年份:2017
- 资助金额:
$ 47.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis and control of collective, coherent, and correlated electron dynamics in laser-driven metal nanostructures
激光驱动金属纳米结构中集体、相干和相关电子动力学的分析和控制
- 批准号:
281272685 - 财政年份:2015
- 资助金额:
$ 47.52万 - 项目类别:
Priority Programmes
Detection and coherent control of electron spins at the nano-scale
纳米尺度电子自旋的检测和相干控制
- 批准号:
274372794 - 财政年份:2015
- 资助金额:
$ 47.52万 - 项目类别:
Heisenberg Professorships
Independent control of electric and thermal conductivities by coherent manipulation of electron and phonon transports using three dimensional nanostructures
使用三维纳米结构对电子和声子传输进行相干操纵,独立控制电导率和热导率
- 批准号:
25600016 - 财政年份:2013
- 资助金额:
$ 47.52万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Detection and coherent control of electron spins at the nano-scale
纳米尺度电子自旋的检测和相干控制
- 批准号:
236615317 - 财政年份:2013
- 资助金额:
$ 47.52万 - 项目类别:
Heisenberg Fellowships
Coherent control of correlated electron systems with ionizing light fields (A02)
电离光场相关电子系统的相干控制(A02)
- 批准号:
201257561 - 财政年份:2011
- 资助金额:
$ 47.52万 - 项目类别:
Collaborative Research Centres