Attosecond Photoemission Dynamics: Novel AB Initio Methods for Atomic and Molecular Ex-situ Spectrscopies
阿秒光电子发射动力学:原子和分子异位光谱的新型 AB 从头算方法
基本信息
- 批准号:1912507
- 负责人:
- 金额:$ 32.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
At a fundamental level, atoms consists of negatively-charge particles, the electrons, flying around a massive positively-charged nucleus. Using ultrashort laser pulses, snapshots of electrons can be taken with attosecond time resolution (one attosecond is a billionth of a billionth of a second), which is the natural timescale of electronic motion. To control how atoms evolve in time, however, it is also essential to be able to predict their fast dynamics. This is a difficult task because electrons try to avoid each other in their motion around the nucleus. Furthermore, electrons occasionally do collide, causing the choreography of the dance to change. During the last three years, this research group has developed numerical tools that can predict how this complex dynamics unfolds under the influence of external light pulses. The present project will add to the theoretical toolbox the pieces necessary to describe three important aspects of electron dynamics; the interaction of their spin with their orbital motion, their interaction with circularly polarized light, and, in the case of molecular electrons, their interaction with two or more nuclear centers. These new tools will contribute to consolidate the U.S. presence in the ultrafast atomic and molecular international community, and to equip the students involved in this research with unique computational skills.Attosecond pulses have given access to the time-resolved study of electronic excitations in atoms and molecules above their ionization threshold. Such studies rely on ever more sophisticated theoretical models. Currently, it is possible to describe, within the electrostatic approximation, the ionization of systems as complex as neon and argon. Yet, the accurate treatment of atoms beyond the first period requires incorporation of their spin-orbit interaction. Thanks to constant experimental advances, the polarization of attosecond light pulses can now be changed at will, and it is possible to detect angularly resolved photoelectron spectra from oriented molecular targets. This project will include spin-orbit effects and the interaction with arbitrarily polarized pulses in the time-resolved description of atomic ionization, and it will extend existing molecular scattering codes to finite-pulse multi-photon ionization regimes. The inclusion of relativistic interactions will be essential to quantify the ionization delay due to the interplay between spin-orbit interaction and electron correlations. The study of ionization with arbitrarily polarized ultrashort pulses will open the way to non-axially symmetric photoemission. The new molecular-codes will be a more rigorous basis for attosecond interferometric spectroscopies. This project aims at solving persistent discrepancies in atomic attosecond experiments that are due to the non-negligible spin-orbit splitting in the valence and inner-valence shells of atoms as heavy as argon and krypton. It will explore new pump-prope schemes with circularly-polarized pulses, which hold the keys to the direct measurement of resonant retardation in photoemission and to the dichroism in the ionization of chiral systems. This project will also foster STEM excellence in Florida by promoting the participation of students from local high schools to the USA Physics Olympiads through off-campus training sessions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在基本层面上,原子由带负电荷的粒子组成,电子围绕着一个带正电荷的大质量原子核飞行。使用超短激光脉冲,电子的快照可以以阿秒时间分辨率(一阿秒是十亿分之一秒的十亿分之一)拍摄,这是电子运动的自然时间尺度。然而,要控制原子如何随时间演化,还必须能够预测它们的快速动力学。这是一项困难的任务,因为电子在绕原子核运动时会尽量避开彼此。此外,电子偶尔会碰撞,导致舞蹈的舞蹈改变。在过去的三年里,该研究小组开发了数值工具,可以预测这种复杂的动力学如何在外部光脉冲的影响下展开。本项目将在理论工具箱中增加必要的部分,以描述电子动力学的三个重要方面:它们的自旋与轨道运动的相互作用,它们与圆偏振光的相互作用,以及在分子电子的情况下,它们与两个或更多个核中心的相互作用。这些新工具将有助于巩固美国在超快原子和分子国际社会的地位,并为参与这项研究的学生提供独特的计算技能。阿秒脉冲使人们能够对原子和分子中高于电离阈值的电子激发进行时间分辨研究。这些研究依赖于越来越复杂的理论模型。目前,在静电近似下,可以描述像氖和氩这样复杂的系统的电离。然而,精确处理原子超过第一周期需要纳入他们的自旋轨道相互作用。由于实验的不断进步,阿秒光脉冲的偏振现在可以随意改变,并且有可能从定向分子目标中检测角度分辨的光电子谱。这个项目将包括自旋轨道效应和与任意极化脉冲的相互作用,在原子电离的时间分辨描述,它将扩展现有的分子散射代码有限脉冲多光子电离制度。由于自旋轨道相互作用和电子关联之间的相互作用,相对论相互作用的列入将是必不可少的量化电离延迟。对任意偏振超短脉冲电离的研究将为非轴对称光电子效应开辟道路。新的分子编码将为阿秒干涉光谱学提供更严格的基础。该项目旨在解决原子阿秒实验中持续存在的差异,这些差异是由于像氩和氪这样重的原子的价层和内价层中不可忽略的自旋轨道分裂造成的。它将探索新的泵浦方案与圆偏振脉冲,持有的关键,直接测量的共振延迟的光电子和二色性的手征系统的电离。该项目还将通过校外培训课程促进当地高中学生参与美国物理奥林匹克竞赛,从而促进佛罗里达的STEM卓越。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Attosecond photoelectron spectroscopy of helium doubly excited states
氦双激发态阿秒光电子能谱
- DOI:10.1103/physrevresearch.5.033047
- 发表时间:2023
- 期刊:
- 影响因子:4.2
- 作者:Argenti, Luca;Lindroth, Eva
- 通讯作者:Lindroth, Eva
Autoionizing Polaritons in Attosecond Atomic Ionization
阿秒原子电离中的自电离极化子
- DOI:10.1103/physrevlett.127.023202
- 发表时间:2021
- 期刊:
- 影响因子:8.6
- 作者:Harkema, N.;Cariker, C.;Lindroth, E.;Argenti, L.;Sandhu, A.
- 通讯作者:Sandhu, A.
Time delays from one-photon transitions in the continuum
- DOI:10.1364/optica.378639
- 发表时间:2020-02-20
- 期刊:
- 影响因子:10.4
- 作者:Fuchs, Jaco;Douguet, Nicolas;Keller, Ursula
- 通讯作者:Keller, Ursula
Two-photon double ionization with finite pulses: Application of the virtual sequential model to helium
- DOI:10.1103/physreva.108.013114
- 发表时间:2023-05
- 期刊:
- 影响因子:2.9
- 作者:S. Chattopadhyay;Carlos Marante;B. Schneider;L. Argenti
- 通讯作者:S. Chattopadhyay;Carlos Marante;B. Schneider;L. Argenti
Multipolariton control in attosecond transient absorption of autoionizing states
自电离态阿秒瞬态吸收的多极化控制
- DOI:10.1103/physreva.105.063107
- 发表时间:2022
- 期刊:
- 影响因子:2.9
- 作者:Yanez-Pagans, S.;Cariker, C.;Shaikh, M.;Argenti, L.;Sandhu, A.
- 通讯作者:Sandhu, A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luca Argenti其他文献
常磁性カイラル系における電流誘起磁性の観測
顺磁手性系统中电流感应磁性的观察
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Nariyuki Saito;Nicolas Douguet;Hiroki Sannohe;Nobuhisa Ishii;Teruto Kanai;Yi Wu;Andrew Chew;Seunghwoi Han;Barry I. Schneider;Jeppe Olsen;Luca Argenti;Zenghu Chang;and Jiro Itatani;伊藤哲明 - 通讯作者:
伊藤哲明
Luca Argenti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luca Argenti', 18)}}的其他基金
Coherent Attosecond Ionization Dynamics in Laser-Dressed Atomic and Molecular Systems
激光修饰原子和分子系统中的相干阿秒电离动力学
- 批准号:
2309133 - 财政年份:2023
- 资助金额:
$ 32.7万 - 项目类别:
Standard Grant
Theoretical Atomic Attosecond Spectroscopy: Monitor and Control of Electron Correlation in Real Time
理论原子阿秒能谱:电子相关性的实时监测和控制
- 批准号:
1607588 - 财政年份:2016
- 资助金额:
$ 32.7万 - 项目类别:
Continuing Grant
相似海外基金
An investigation of charge-transfer dynamics in organic photovoltaics using time- and angle-resolved photoemission spectroscopy and scanning tunnelling microscopy
使用时间和角度分辨光电子能谱和扫描隧道显微镜研究有机光伏中的电荷转移动力学
- 批准号:
547073-2020 - 财政年份:2022
- 资助金额:
$ 32.7万 - 项目类别:
Postgraduate Scholarships - Doctoral
An investigation of charge-transfer dynamics in organic photovoltaics using time- and angle-resolved photoemission spectroscopy and scanning tunnelling microscopy
使用时间和角度分辨光电子能谱和扫描隧道显微镜研究有机光伏中的电荷转移动力学
- 批准号:
547073-2020 - 财政年份:2021
- 资助金额:
$ 32.7万 - 项目类别:
Postgraduate Scholarships - Doctoral
An investigation of charge-transfer dynamics in organic photovoltaics using time- and angle-resolved photoemission spectroscopy and scanning tunnelling microscopy
使用时间和角度分辨光电子能谱和扫描隧道显微镜研究有机光伏中的电荷转移动力学
- 批准号:
547073-2020 - 财政年份:2020
- 资助金额:
$ 32.7万 - 项目类别:
Postgraduate Scholarships - Doctoral
Dynamics measurement of interfacial reaction at Au thin film/Si substrates by using ambient controlled x-ray photoemission spectroscopy
使用环境控制的 X 射线光电子能谱动态测量金薄膜/硅衬底的界面反应
- 批准号:
19K05269 - 财政年份:2019
- 资助金额:
$ 32.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spin-orbital entanglement and photo-excited dynamics investigated by laser photoemission spectroscopy
通过激光光电子能谱研究自旋轨道纠缠和光激发动力学
- 批准号:
17K14319 - 财政年份:2017
- 资助金额:
$ 32.7万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Ultrafast dynamics and resonance effects in photoemission from surfaces
表面光电发射的超快动力学和共振效应
- 批准号:
16K05393 - 财政年份:2016
- 资助金额:
$ 32.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure and photoemission dynamics of negative ions via photoelectron imaging spectroscopy
通过光电子成像光谱研究负离子的结构和光电子发射动力学
- 批准号:
1266152 - 财政年份:2013
- 资助金额:
$ 32.7万 - 项目类别:
Standard Grant
Laser-pulse-induced dynamics of adsorbed molecules investigated by inelastic photoemission spectroscopy
通过非弹性光电子能谱研究吸附分子的激光脉冲诱导动力学
- 批准号:
24540332 - 财政年份:2012
- 资助金额:
$ 32.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Electronic structure and ultrafast dynamics of FeAs-based superconductors by angle- and timeresolved photoemission spectroscopy
通过角和时间分辨光电子能谱研究 FeAs 基超导体的电子结构和超快动力学
- 批准号:
168637527 - 财政年份:2010
- 资助金额:
$ 32.7万 - 项目类别:
Priority Programmes
Electron Solvation Dynamics in One-Dimensional Superstructures Investigated by Two-Photon Photoemission Spectroscopy
双光子光电发射光谱研究一维超结构中的电子溶剂化动力学
- 批准号:
20750011 - 财政年份:2008
- 资助金额:
$ 32.7万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




