Collaborative Research: Data-driven Path Metrics for Machine Learning

协作研究:机器学习的数据驱动路径度量

基本信息

  • 批准号:
    1912737
  • 负责人:
  • 金额:
    $ 1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

The era of big data has introduced unprecedented computational and mathematical challenges. Traditional machine learning algorithms often lack scalable computational complexity, while modern approaches lack solid mathematical foundations. Moreover, high data dimensionality creates challenges for traditional methods of data analysis. The principal investigators (PIs) propose to combine classic dimension reduction methods with data-driven distances, so that both the distance and embedding procedure are data dependent. This novel approach allows for greater flexibility in balancing the density-based and geometric features of the data, achieves a density-based simplification of geometry, and insightfully represents the data in a small number of dimensions. In contrast to black box methods such as deep learning, the developed methodology can be rigorously analyzed to derive strong theoretical guarantees for several statistical and machine learning tasks. This research will contribute computational tools for cancer immunogenomics and the investigators will consult with the Rogel Cancer Center at the University of Michigan for scientific questions related to tumor immunology and T-cell biology. In addition, new data analysis tools will be made publicly available in an open source software package. The investigators' approach is driven by the analysis of a family of data-dependent path metrics. These metrics are both density-sensitive and geometry-preserving, with the balance governed by the choice of a single parameter p. By utilizing the space of paths through data, the PIs will obtain density based metrics and embeddings while avoiding the explicit computation of a density estimator, which may be unreliable in a large number of dimensions. The PIs will propose a simple yet highly flexible data model which does not assume the data is sampled from a manifold or collection of manifolds, and investigate the continuous limit of these metrics and an associated graph Laplacian operator. By continuously varying the parameter p, the PIs will propose to create data videos which represent the data from multiple perspectives. The PIs will investigate both multidimensional scaling and graph Laplacian embeddings as mechanisms for obtaining path-based low dimensional representations, and will explore fast algorithms with scalable computational complexity for approximating these metrics. The PIs will contextualize path metrics in the larger frame work of data-driven metrics and focus specifically on the analysis of biological data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大数据时代给计算和数学带来了前所未有的挑战。传统的机器学习算法往往缺乏可扩展的计算复杂性,而现代方法缺乏坚实的数学基础。此外,高数据维度给传统的数据分析方法带来了挑战。主要研究者提出将经典降维方法与数据驱动距离相结合,使距离和嵌入过程都依赖于数据。这种新颖的方法在平衡数据的基于密度和几何特征方面具有更大的灵活性,实现了基于密度的几何简化,并在少量维度中深刻地表示数据。与黑箱方法(如深度学习)相比,开发的方法可以进行严格的分析,从而为若干统计和机器学习任务提供强有力的理论保证。这项研究将为癌症免疫基因组学提供计算工具,研究人员将向密歇根大学的Rogel癌症中心咨询有关肿瘤免疫学和t细胞生物学的科学问题。此外,新的数据分析工具将以开源软件包的形式公开提供。研究人员的方法是由一系列数据依赖的路径指标的分析驱动的。这些指标既对密度敏感,又保持几何不变,其平衡由单个参数p的选择来控制。通过利用数据路径空间,pi将获得基于密度的指标和嵌入,同时避免了密度估计器的显式计算,这在大量维度中可能是不可靠的。pi将提出一个简单而高度灵活的数据模型,该模型不假设数据是从流形或流形集合中采样的,并研究这些指标的连续极限和相关的图拉普拉斯算子。通过不断改变参数p, pi将提出创建从多个角度表示数据的数据视频。pi将研究多维尺度和图拉普拉斯嵌入作为获得基于路径的低维表示的机制,并将探索具有可扩展计算复杂性的快速算法来近似这些指标。pi将在数据驱动指标的更大框架中对路径指标进行上下文化,并特别关注生物数据的分析。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GLIDE: combining local methods and diffusion state embeddings to predict missing interactions in biological networks
  • DOI:
    10.1093/bioinformatics/btaa459
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Devkota, Kapil;Murphy, James M.;Cowen, Lenore J.
  • 通讯作者:
    Cowen, Lenore J.
Path-Based Spectral Clustering: Guarantees, Robustness to Outliers, and Fast Algorithms
  • DOI:
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Little;M. Maggioni;James M. Murphy
  • 通讯作者:
    A. Little;M. Maggioni;James M. Murphy
A Multiscale Environment for Learning by Diffusion
  • DOI:
    10.1016/j.acha.2021.11.004
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James M. Murphy;Sam L. Polk
  • 通讯作者:
    James M. Murphy;Sam L. Polk
Diffusion State Distances: Multitemporal Analysis, Fast Algorithms, and Applications to Biological Networks
Multiscale Clustering of Hyperspectral Images Through Spectral-Spatial Diffusion Geometry
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Murphy其他文献

"I'd be watching him contour till 10 o'clock at night": Understanding Tensions between Teaching Methods and Learning Needs in Healthcare Apprenticeship
“我会看着他的轮廓直到晚上 10 点”:理解医疗学徒培训中教学方法和学习需求之间的紧张关系
Dental, Oral, and Maxillofacial Diseases and Conditions and Their Treatment
牙科、口腔和颌面疾病和病症及其治疗
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Cornwall;K. Marti;C. Skouteris;James Murphy;B. Ward;I. Makovey;S. Edwards
  • 通讯作者:
    S. Edwards
CARDINAL AND ORDINAL NUMBERS
  • DOI:
    10.1007/978-0-387-22767-2_1
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Murphy
  • 通讯作者:
    James Murphy
Ocular hypertension following 40 mg sub-Tenon triamcinolone versus 0.7 mg dexamethasone implant versus 2 mg intravitreal triamcinolone.
40 mg sub-Tenon 曲安西龙对比 0.7 mg 地塞米松植入物对比 2 mg 玻璃体内曲安西龙后出现高眼压。
Assessment of fiducial motion in CBCT projections of the abdominal tumor using template matching and sequential stereo triangulation
使用模板匹配和连续立体三角测量评估腹部肿瘤 CBCT 投影中的基准运动
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Oderinde;H. Mostafavi;D. Simpson;James Murphy;Gwe‐Ya Kim;L. Cerviño
  • 通讯作者:
    L. Cerviño

James Murphy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Murphy', 18)}}的其他基金

Doctoral Dissertation Research: Medium-scale farming systems and agricultural entrepreneuership
博士论文研究:中等规模农业系统与农业创业
  • 批准号:
    2233591
  • 财政年份:
    2023
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
ATD: Diffusion and Transport on Graphs: Active Learning, Low-Dimensional Representations, and Anomaly Detection
ATD:图上的扩散和传输:主动学习、低维表示和异常检测
  • 批准号:
    2318894
  • 财政年份:
    2023
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Towards Harmonic Analysis in Wasserstein Space: Low-Dimensional Structures, Learning, and Algorithms
Wasserstein 空间中的调和分析:低维结构、学习和算法
  • 批准号:
    2309519
  • 财政年份:
    2023
  • 资助金额:
    $ 1万
  • 项目类别:
    Continuing Grant
ATD: Landscape Networks and Nonlinear Diffusions for Anomaly Detection and Active Learning
ATD:用于异常检测和主动学习的景观网络和非线性扩散
  • 批准号:
    1924513
  • 财政年份:
    2019
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Assembling Community Economies
博士论文研究:整合社区经济
  • 批准号:
    1655094
  • 财政年份:
    2017
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: National Integration or Regional Competition? Industrial Policy Debates in a Rising Power.
博士论文研究:国家一体化还是区域竞争?
  • 批准号:
    1234594
  • 财政年份:
    2012
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Electronic Waste Recycling in South Africa: Transition Management in Practice?
博士论文研究:南非的电子废物回收:实践中的转型管理?
  • 批准号:
    0927837
  • 财政年份:
    2009
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
The Role of Information-Communication Technologies in Enterprise Development and Industrial Change in Africa: Evidence from South Africa and Tanzania
信息通信技术在非洲企业发展和产业变革中的作用:来自南非和坦桑尼亚的证据
  • 批准号:
    0925151
  • 财政年份:
    2009
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
The Socio-Spatial Dimensions of Industrial Change in Bolivia: Manufacturers, Regions, and the Prospects for Global Value Chain Integration
玻利维亚产业变革的社会空间维度:制造商、地区和全球价值链一体化的前景
  • 批准号:
    0616030
  • 财政年份:
    2006
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
NSF/AFOSR Astronomy: Spatial and Temporal Variations in the Atmospheric Aerosol Content of Mars, Jupiter, and Saturn
NSF/AFOSR 天文学:火星、木星和土星大气气溶胶含量的时空变化
  • 批准号:
    0335665
  • 财政年份:
    2003
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323083
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了