Towards Harmonic Analysis in Wasserstein Space: Low-Dimensional Structures, Learning, and Algorithms

Wasserstein 空间中的调和分析:低维结构、学习和算法

基本信息

  • 批准号:
    2309519
  • 负责人:
  • 金额:
    $ 37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Developing efficient methods for statistical and computational data analysis is an essential task in the 21st century. This project will leverage structures in large, high-dimensional data which has the potential to transform a range of scientific areas including image processing, natural language processing, and computational social sciences. Data will be modeled as probability measures in order to develop tractable and data-efficient machine learning methods that crucially leverage intrinsic geometric properties of the data (e.g., shapes in images and semantics in text documents). The focus is on theoretical foundations and scalable algorithms that compete with state-of-the-art black box methods while retaining a high degree of interpretability. Beyond the core focus on mathematics, data science, and machine learning, these frameworks and algorithms have immediate applications to geoscience and geography. The new data analysis tools developed will allow the investigators to address long-standing open problems in these fields, which will provide important sources of validation data. A major component of this project is training both PhD students and undergraduates in research at the intersection of mathematics, data science, and computing.Specifically, the focus of the project is on fundamental problems of (1) modeling with and computing in intrinsically low-dimensional sets of probability measures and (2) the learnability and expressivity of these low-dimensional sets. The investigators treat data as measures in Wasserstein space and propose to develop analogues of low-dimensional models in the classical vector space setting by allowing for efficient synthesis and analysis of observed measures with respect to a set of reference distributions. The focus is on two major problems pertaining to low-dimensional structures in Wasserstein space. First, what is the "correct" model for intrinsically low-dimensional subsets of Wasserstein space, and how can they be computed? The investigators propose to mimic notions of low-dimensional subspace (exact and approximate), by proposing three models that leverage the geometric properties of Wasserstein space, as well as recent computational advances in entropic regularization. The goal for these three models is to efficiently encode (analyze) measures by their coefficients in these low-dimensional subsets of Wasserstein space, and also decode (synthesize). The focus is on efficiency from both a statistical (e.g., estimating given samples from the measures) and computational (e.g., designing algorithms with sub-cubic complexity) perspective. Second, what are the efficient, computable, and expressive representational systems in Wasserstein space? The investigators propose to tackle the data-driven problem of, given observed probability measures, how to identify and learn a small number of reference measures that can represent them efficiently. In parallel, the investigators will study the fundamental problem of what systems are expressive enough to represent typical elements of Wasserstein space. This provides the crucial connection between the computational algorithms and an embryonic theory of harmonic analysis in Wasserstein space.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
发展有效的统计和计算数据分析方法是世纪的重要任务。 该项目将利用大型高维数据中的结构,这些数据有可能改变一系列科学领域,包括图像处理,自然语言处理和计算社会科学。 数据将被建模为概率度量,以便开发易于处理和数据高效的机器学习方法,这些方法至关重要地利用数据的内在几何属性(例如,图像中的形状和文本文档中的语义)。 重点是理论基础和可扩展的算法,与最先进的黑盒方法竞争,同时保持高度的可解释性。 除了对数学、数据科学和机器学习的核心关注之外,这些框架和算法还可以直接应用于地球科学和地理学。 开发的新数据分析工具将使调查人员能够解决这些领域长期存在的问题,这将提供重要的验证数据来源。 该项目的主要内容是培养博士生和本科生在数学、数据科学和计算交叉领域的研究能力。具体来说,该项目的重点是(1)在固有低维概率测度集合中建模和计算的基本问题,以及(2)这些低维集合的可学习性和表达性。 研究人员将数据视为Wasserstein空间中的措施,并建议通过允许有效合成和分析一组参考分布的观测措施,在经典向量空间设置中开发低维模型的类似物。 重点是两个主要问题有关的低维结构在Wasserstein空间。 首先,什么是“正确的”模型,为内在低维子集的沃瑟斯坦空间,以及如何才能计算? 研究人员建议通过提出三种模型来模拟低维子空间(精确和近似)的概念,这些模型利用了Wasserstein空间的几何特性以及熵正则化的最新计算进展。 这三个模型的目标是通过Wasserstein空间的这些低维子集中的系数来有效地编码(分析)度量,并解码(合成)。 重点是从统计(例如,从测量估计给定样本)和计算(例如,设计具有次立方复杂度的算法)的观点。 第二,什么是有效的,可计算的,并在沃瑟斯坦空间表现系统? 研究人员建议解决数据驱动的问题,给定观察到的概率测度,如何识别和学习少量的参考测度,以有效地表示它们。 与此同时,研究人员将研究什么样的系统具有足够的表现力来表示Wasserstein空间的典型元素的基本问题。 这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Murphy其他文献

Dental, Oral, and Maxillofacial Diseases and Conditions and Their Treatment
牙科、口腔和颌面疾病和病症及其治疗
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Cornwall;K. Marti;C. Skouteris;James Murphy;B. Ward;I. Makovey;S. Edwards
  • 通讯作者:
    S. Edwards
CARDINAL AND ORDINAL NUMBERS
  • DOI:
    10.1007/978-0-387-22767-2_1
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Murphy
  • 通讯作者:
    James Murphy
"I'd be watching him contour till 10 o'clock at night": Understanding Tensions between Teaching Methods and Learning Needs in Healthcare Apprenticeship
“我会看着他的轮廓直到晚上 10 点”:理解医疗学徒培训中教学方法和学习需求之间的紧张关系
Ocular hypertension following 40 mg sub-Tenon triamcinolone versus 0.7 mg dexamethasone implant versus 2 mg intravitreal triamcinolone.
40 mg sub-Tenon 曲安西龙对比 0.7 mg 地塞米松植入物对比 2 mg 玻璃体内曲安西龙后出现高眼压。
Gluteal fold flaps for perineal reconstruction.
用于会阴重建的臀皱皮瓣。

James Murphy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Murphy', 18)}}的其他基金

Doctoral Dissertation Research: Medium-scale farming systems and agricultural entrepreneuership
博士论文研究:中等规模农业系统与农业创业
  • 批准号:
    2233591
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
ATD: Diffusion and Transport on Graphs: Active Learning, Low-Dimensional Representations, and Anomaly Detection
ATD:图上的扩散和传输:主动学习、低维表示和异常检测
  • 批准号:
    2318894
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven Path Metrics for Machine Learning
协作研究:机器学习的数据驱动路径度量
  • 批准号:
    1912737
  • 财政年份:
    2019
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
ATD: Landscape Networks and Nonlinear Diffusions for Anomaly Detection and Active Learning
ATD:用于异常检测和主动学习的景观网络和非线性扩散
  • 批准号:
    1924513
  • 财政年份:
    2019
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Assembling Community Economies
博士论文研究:整合社区经济
  • 批准号:
    1655094
  • 财政年份:
    2017
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: National Integration or Regional Competition? Industrial Policy Debates in a Rising Power.
博士论文研究:国家一体化还是区域竞争?
  • 批准号:
    1234594
  • 财政年份:
    2012
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Electronic Waste Recycling in South Africa: Transition Management in Practice?
博士论文研究:南非的电子废物回收:实践中的转型管理?
  • 批准号:
    0927837
  • 财政年份:
    2009
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
The Role of Information-Communication Technologies in Enterprise Development and Industrial Change in Africa: Evidence from South Africa and Tanzania
信息通信技术在非洲企业发展和产业变革中的作用:来自南非和坦桑尼亚的证据
  • 批准号:
    0925151
  • 财政年份:
    2009
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
The Socio-Spatial Dimensions of Industrial Change in Bolivia: Manufacturers, Regions, and the Prospects for Global Value Chain Integration
玻利维亚产业变革的社会空间维度:制造商、地区和全球价值链一体化的前景
  • 批准号:
    0616030
  • 财政年份:
    2006
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
NSF/AFOSR Astronomy: Spatial and Temporal Variations in the Atmospheric Aerosol Content of Mars, Jupiter, and Saturn
NSF/AFOSR 天文学:火星、木星和土星大气气溶胶含量的时空变化
  • 批准号:
    0335665
  • 财政年份:
    2003
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant

相似国自然基金

算子方法在Harmonic数恒等式中的应用
  • 批准号:
    11201241
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Ricci-Harmonic流的长时间存在性
  • 批准号:
    11126190
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    2349756
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Some problems in harmonic analysis
谐波分析中的一些问题
  • 批准号:
    2350101
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Conference: Madison Lectures in Harmonic Analysis
会议:麦迪逊谐波分析讲座
  • 批准号:
    2337344
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
  • 批准号:
    2348797
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
  • 批准号:
    2236493
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Continuing Grant
Harmonic Analysis
谐波分析
  • 批准号:
    2883127
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Studentship
Conference: Harmonic and Complex Analysis: Modern and Classical
会议:调和与复分析:现代与古典
  • 批准号:
    2308417
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了