Inverse Problems with Internal Data
内部数据的反问题
基本信息
- 批准号:1912821
- 负责人:
- 金额:$ 39.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Advances in imaging technologies such as computed tomography (CT), magnetic resonance imaging (MRI) and super resolution microscopy have transformed the practice of clinical medicine and basic biomedical research. Although the development of such technologies is well known to depend upon progress in physics and engineering, it is less well known that applied and computational mathematics has also played an essential role. This research project studies mathematical questions that arise in new medical biomedical imaging modalities in which new novel measurements play a key role. The research will study novel mathematical algorithms that will lead to improvements in optical imaging both with respect to resolution (visualizing structures at smaller scales) and computational speed. In particular, the project aims to devise robust and accurate image reconstruction algorithms that may lead to the detection and characterization of disease at much earlier stages than is currently possible. The principal investigator has research interests in applied mathematics and theoretical physics. He is also a physician. Graduate students will be trained to function in this interdisciplinary environment.The objective of this project is to investigate inverse problems with internal data that arise in biomedical optical imaging. Two classes of problems will be considered. (i) Teh PI will develop mathematically-justified methods for imaging below the diffraction limit of resolution, also known as superresolution imaging. The proposed work includes both analysis of the inverse scattering problem with internal sources and the development of reconstruction algorithms. The algorithms will be tested and characterized using data from physically realistic numerical simulations. (ii) The PI will study inverse problems that arise in acousto-optic imaging. The research will focus on the regime of coherent multiple scattering which leads to considerable mathematical simplifications compared to incoherent imaging. In particular, the PI will develop reconstruction methods for recovering the absorption and scattering coefficients of the radiative transport equation from coherent acousto-optic measurements. Finally, the role of improvements in modeling of the acousto-optic effect on image reconstruction will be investigated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算机断层扫描(CT)、磁共振成像(MRI)和超分辨率显微镜等成像技术的进步改变了临床医学和基础生物医学研究的实践。虽然众所周知,这些技术的发展取决于物理学和工程学的进步,但人们不太清楚的是,应用数学和计算数学也发挥了重要作用。该研究项目研究了新的医学生物医学成像模式中出现的数学问题,其中新的测量方法发挥了关键作用。该研究将研究新的数学算法,这些算法将导致光学成像在分辨率(在较小尺度下可视化结构)和计算速度方面的改进。特别是,该项目旨在设计强大而准确的图像重建算法,可能导致在比目前可能的更早的阶段检测和表征疾病。主要研究者的研究兴趣是应用数学和理论物理。他也是一名医生。研究生将被训练在这个跨学科的环境中发挥作用。本项目的目标是研究生物医学光学成像中出现的内部数据的逆问题。将考虑两类问题。(i)该PI将开发用于分辨率衍射极限以下成像的方法,也称为超分辨率成像。所提出的工作包括分析与内部源的逆散射问题和重建算法的发展。该算法将进行测试,并使用物理现实的数值模拟数据的特点。(ii)PI将研究声光成像中出现的逆问题。研究将集中在制度的相干多重散射,导致相当大的数学简化相比,非相干成像。特别是,PI将开发用于从相干声光测量中恢复辐射传输方程的吸收和散射系数的重建方法。最后,改进模型的声光效应对图像重建的作用将被调查。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Radiative transport model for coherent acousto-optic tomography
相干声光断层扫描的辐射传输模型
- DOI:10.1088/1361-6420/ab82ef
- 发表时间:2020
- 期刊:
- 影响因子:2.1
- 作者:Chung, Francis J;Hoskins, Jeremy G;Schotland, John C
- 通讯作者:Schotland, John C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Schotland其他文献
John Schotland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Schotland', 18)}}的其他基金
Collaborative Research: Direct Reconstruction Methods for Optical Tomography and Related Inverse Problems
合作研究:光学断层扫描的直接重建方法及相关反问题
- 批准号:
1108969 - 财政年份:2011
- 资助金额:
$ 39.37万 - 项目类别:
Standard Grant
Collaborative Research: Inversion of the Broken-Ray Radon Transform and Applications
合作研究:断射线氡变换反演及应用
- 批准号:
1115574 - 财政年份:2011
- 资助金额:
$ 39.37万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Inverse Problems in Transport Theory
合作研究:FRG:传输理论中的反问题
- 批准号:
0554100 - 财政年份:2006
- 资助金额:
$ 39.37万 - 项目类别:
Standard Grant
相似海外基金
Research on causality and neurobehavioral mechanisms in the association between internal desynchronization caused by rotating shift work and mental and physical health problems
轮班工作引起的内部失同步与身心健康问题的因果关系及神经行为机制研究
- 批准号:
18H03175 - 财政年份:2018
- 资助金额:
$ 39.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of an assessment index for physical and psychosocial problems for intractable disease patients with internal impediment
疑难内科疑难杂症患者身心问题评估指标的制定
- 批准号:
16K04187 - 财政年份:2016
- 资助金额:
$ 39.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Self-organization of Constitutional Institutions: Transformation and Constitutional Problems of Internal Rules of Public Authorities
宪政机构的自组织:公权力内部规则的变迁与宪政问题
- 批准号:
255548693 - 财政年份:2014
- 资助金额:
$ 39.37万 - 项目类别:
Research Grants
Time-periodic solutions with internal and boundary layers to singularly perturbed parabolic problems: Existence, approximation and domain of attraction
奇扰动抛物线问题的具有内部层和边界层的时间周期解:存在性、近似性和吸引域
- 批准号:
259134773 - 财政年份:2014
- 资助金额:
$ 39.37万 - 项目类别:
Research Grants
Clasical unresolved problems in internal hydraulics and their practical relevance
内部水力学中未解决的经典问题及其实际意义
- 批准号:
36366-2002 - 财政年份:2005
- 资助金额:
$ 39.37万 - 项目类别:
Discovery Grants Program - Individual
Clasical unresolved problems in internal hydraulics and their practical relevance
内部水力学中未解决的经典问题及其实际意义
- 批准号:
36366-2002 - 财政年份:2004
- 资助金额:
$ 39.37万 - 项目类别:
Discovery Grants Program - Individual
Clasical unresolved problems in internal hydraulics and their practical relevance
内部水力学中未解决的经典问题及其实际意义
- 批准号:
36366-2002 - 财政年份:2003
- 资助金额:
$ 39.37万 - 项目类别:
Discovery Grants Program - Individual
Clasical unresolved problems in internal hydraulics and their practical relevance
内部水力学中未解决的经典问题及其实际意义
- 批准号:
36366-2002 - 财政年份:2002
- 资助金额:
$ 39.37万 - 项目类别:
Discovery Grants Program - Individual
Internal Constraints Applied to Dynamic Problems
应用于动态问题的内部约束
- 批准号:
6008290 - 财政年份:1960
- 资助金额:
$ 39.37万 - 项目类别: