Information-Based Complexity Analysis for Large-Scale Nonlinear Optimization

大规模非线性优化的基于信息的复杂性分析

基本信息

  • 批准号:
    1913006
  • 负责人:
  • 金额:
    $ 24.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Recent years have seen rapid advances in the fields of data analysis, which has impacts in various disciplines. Optimization has been an important tool in solving problems arising from data analysis applications. Modern applications with large volume datasets and sophisticated data structures bring great challenges to designing scalable and efficient numerical optimization algorithms for large-scale nonlinear optimization problems. While the goal of optimization algorithm design is to solve the problems of interest as efficiently as possible, it is equally important to study the complexity of the problems of interest themselves. In particular, the complexity analysis of a class of nonlinear optimization problems reveals the fundamental performance limits of any algorithms for solving problems in such class. The discovered performance limits would then encourage one to design efficient algorithms that reach such performance limits. First-order methods are a class of numerical optimization algorithms that only need to access the information on function value and first-order derivatives. Due to the computational efficiency and scalability, first-order methods have been widely used to solve large-scale nonlinear optimization problems. This proposal addresses the important question of performance limits of first-order methods through the information-based complexity theory. The problems of interests are nonlinear optimization with different special structures. In order to accelerate computation, many special problem structures have been explored in the literature on algorithm design. By utilizing the problem structure, several newly designed algorithms are able to achieve improved computational performance. However, comparing with the rapidly growing number of new and novel algorithms on structured nonlinear optimization, the complexity analysis and the design of worse-case instances does not match with the advancement in algorithm design. This proposal aims to close some of the aforementioned gaps by constructing several worst-case examples that demonstrate the performance limits of first-order methods, in the hope of broaden the understanding of efficiency of first-order methods and the difficulty of certain nonlinear optimization models.This project is jointly funded by Computational Mathematics Program, DMS/MPS, and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,数据分析领域取得了快速发展,对各个学科产生了影响。优化一直是解决数据分析应用中出现的问题的重要工具。大规模数据集和复杂数据结构的现代应用给大规模非线性优化问题的可扩展性和高效数值优化算法的设计带来了巨大挑战。虽然优化算法设计的目标是尽可能有效地解决感兴趣的问题,但研究感兴趣的问题本身的复杂性也同样重要。特别是,一类非线性优化问题的复杂性分析揭示了解决此类问题的任何算法的基本性能限制。所发现的性能极限将鼓励人们设计达到这种性能极限的有效算法。 一阶方法是一类只需要获取函数值和一阶导数信息的数值优化算法。由于一阶方法具有计算效率高、可扩展性好等优点,被广泛应用于求解大规模非线性优化问题。该建议通过基于信息的复杂性理论解决了一阶方法性能极限的重要问题。利益相关问题是具有不同特殊结构的非线性优化问题。为了加速计算,许多特殊的问题结构已在算法设计的文献中进行了探索。通过利用问题结构,一些新设计的算法能够实现更好的计算性能。然而,与结构化非线性优化算法的不断涌现相比,算法的复杂性分析和最坏情况实例的设计与算法设计的先进性并不匹配。本研究的目的是通过构建几个最坏情况的例子来证明一阶方法的性能极限,从而弥补上述一些差距,希望扩大对一阶方法的效率和某些非线性优化模型的难度的理解。本项目由计算数学计划DMS/MPS,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Some worst-case datasets of deterministic first-order methods for solving binary logistic regression
用于求解二元逻辑回归的确定性一阶方法的一些最坏情况数据集
  • DOI:
    10.3934/ipi.2020047
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Ouyang, Yuyuan;Squires, Trevor
  • 通讯作者:
    Squires, Trevor
Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems
  • DOI:
    10.1007/s10107-019-01420-0
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Yuyuan Ouyang;Yangyang Xu
  • 通讯作者:
    Yuyuan Ouyang;Yangyang Xu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuyuan Ouyang其他文献

A spatial regularization framework of orientation diffusion functions using total variation and wavelet
使用全变分和小波的方向扩散函数的空间正则化框架
Vectorial total variation regularisation of orientation distribution functions in diffusion weighted MRI
扩散加权MRI中方向分布函数的矢量全变分正则化
Responses of Yield and Photosynthetic Characteristics of Rice to Climate Resources under Different Crop Rotation Patterns and Planting Methods
不同轮作方式和种植方式下水稻产量及光合特性对气候资源的响应
  • DOI:
    10.3390/plants13040526
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hong Yang;Guangyi Chen;Ziyu Li;Wei Li;Yao Zhang;Congmei Li;Mingming Hu;Xin;Qiuqiu Zhang;Conghua Zhu;Fahong Qing;Xianyu Wei;Tian Li;Xuyi Li;Yuyuan Ouyang
  • 通讯作者:
    Yuyuan Ouyang
PT33 Reliability and Validity of EuroQol-5 Dimensions-5 Levels in Patients with Hematologic Malignancies: A Cross-Sectional Study
  • DOI:
    10.1016/j.jval.2025.04.1580
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Wei Qin;Ya Chen;Yuyuan Ouyang;Hong Xiao;Dan Yu;Cong Zeng;Jinbiao Chen;Tingyin Chen;Huiqing Huang;Zhaoxin Qian;Yajing Xu;Wendong Chen
  • 通讯作者:
    Wendong Chen
An enhanced approach for simultaneous image reconstruction and sensitivity map estimation in partially parallel imaging
部分并行成像中同步图像重建和灵敏度图估计的增强方法

Yuyuan Ouyang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
  • 批准号:
    81900115
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Reality-based Interaction用户界面模型和评估方法研究
  • 批准号:
    61170182
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
  • 批准号:
    30470665
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
  • 批准号:
    60376005
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Information-Based Complexity Analysis and Optimal Methods for Saddle-Point Structured Optimization
基于信息的鞍点结构优化的复杂性分析和优化方法
  • 批准号:
    2053493
  • 财政年份:
    2021
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant
Complexity of High-Dimensional Statistical Models: An Information-Based Approach
高维统计模型的复杂性:基于信息的方法
  • 批准号:
    2015285
  • 财政年份:
    2020
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant
Digital Security by Design – Developing complexity based, un-crackable, high-efficiency mass information and data security products
设计数字安全 — 开发基于复杂性、不可破解、高效的海量信息和数据安全产品
  • 批准号:
    55355
  • 财政年份:
    2020
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Study
Information-Based Complexity and Efficient Algorithms for Multivariate Problems
多元问题的基于信息的复杂性和高效算法
  • 批准号:
    0511994
  • 财政年份:
    2005
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Information-Based Complexity of Multivariate Problems
多元问题的基于信息的复杂性
  • 批准号:
    0095709
  • 财政年份:
    2001
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Theory and Applications of Information-Based Complexity
基于信息的复杂性理论与应用
  • 批准号:
    0097348
  • 财政年份:
    2001
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Theory and Applications of Information-Based Complexity
基于信息的复杂性理论与应用
  • 批准号:
    9731858
  • 财政年份:
    1998
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Information-Based Complexity of Multivariate Problems
多元问题的基于信息的复杂性
  • 批准号:
    9729971
  • 财政年份:
    1998
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
Average Case and Probabilistic Setting of Information-Based Complexity
基于信息的复杂性的平均情况和概率设置
  • 批准号:
    9420543
  • 财政年份:
    1995
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Complexity and Information Based Criteria for Model Selection
数学科学:模型选择的复杂性和基于信息的标准
  • 批准号:
    9210131
  • 财政年份:
    1992
  • 资助金额:
    $ 24.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了