Discrete Maximal Parabolic Regularity for Time Discontinuous Galerkin Methods with Applications

时间不连续伽辽金方法的离散最大抛物线正则及其应用

基本信息

  • 批准号:
    1913133
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Parabolic problems touch many areas of pure and applied mathematics and serve as a model of many environmental and real-life problems, such as optimal location of wastewater outfalls, location of the pollution sources, modeling of calcium waves in a heart cell and etc. Usually the resulting equations are very complicated to be treated analytically and must be solved by numerical methods. The analysis of such approximations is usually hard and technical and requires expertise in time and space discretization methods. For continuous problems the importance of the maximal parabolic regularity is well-recognized and has a number of applications, for example to nonlinear problems, optimal control problems and generally to problems where sharp results are required. In contrast to the continuous case, the discrete maximal parabolic regularity only recently came to the attention of the numerical analysis community and its potential is not yet fully realized. Such results, for example, reduce the analysis of transient problems to stationery ones, which are usually much less technical with many results already available in the literature. This for example would benefit a number of researchers, especially who are at the beginning of their careers and are not experts in time discretization methods.In this research the principal investigator will extend the theory of discrete maximal parabolic regularity for discontinuous Galerkin time schemes in several directions. The research plan includes the following projects. The first project extends the known results to non-symmetric autonomous elliptic operators, such as transient advection-reaction-diffusion problems, including the advection-dominated case. Such problems are classical and have been at the center of research for many years. As an application of such results, the PI intends to answer some of the open questions, for example whether the stabilized methods require stabilization parameters that depend on the time steps. In the second project, the PI intends to extend our previous results for non-autonomous problems to more general norms, that are important for a number of applications, for instance, quasilinear parabolic equations and optimal control problems. Finally, the PI plans to investigate more general parabolic systems, such as transient Stokes and Navier-Stokes problems, which are very important for the fluid flow problems and to obtain fully discrete best approximation type result in general Lebesgue space norms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
抛物问题涉及到理论数学和应用数学的许多领域,也是许多环境和现实问题的模型,如污水排放口的最佳位置,污染源的位置,心脏细胞中钙波的建模等。通常,所得到的方程非常复杂,不能解析处理,必须用数值方法求解。这种近似的分析通常是困难和技术性的,需要时间和空间离散化方法的专业知识。对于连续问题的重要性,最大抛物正则性是公认的,并有一些应用,例如非线性问题,最优控制问题,并一般问题的尖锐的结果是必需的。在连续的情况下,离散的最大抛物正则性只是最近才引起数值分析界的注意,其潜力尚未完全实现。这样的结果,例如,减少瞬态问题的分析,以固定的,这通常是少得多的技术与许多结果已经在文献中。例如,这将有利于一些研究人员,特别是谁是在他们的职业生涯的开始,而不是专家在时间discretizationmethods.In这项研究的主要研究者将扩展离散最大抛物正则性理论的不连续Galerkin时间计划在几个方向。研究计划包括以下项目。第一个项目扩展了已知的结果,非对称自治椭圆算子,如瞬态对流反应扩散问题,包括对流主导的情况下。这些问题是经典的,多年来一直是研究的中心。作为这些结果的应用,PI打算回答一些开放的问题,例如,是否稳定的方法需要稳定的参数,取决于时间步长。在第二个项目中,PI打算将我们以前的非自治问题的结果扩展到更一般的规范,这对一些应用程序很重要,例如,拟线性抛物方程和最优控制问题。最后,PI计划研究更一般的抛物系统,如瞬态Stokes和Navier-Stokes问题,这对流体流动问题非常重要,并在一般Lebesgue空间规范中获得完全离散的最佳近似型结果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pointwise error estimates for $C^0$ interior penalty approximation of biharmonic problems
双调和问题的 $C^0$ 内部惩罚近似的点误差估计
  • DOI:
    10.1090/mcom/3596
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Leykekhman, D.
  • 通讯作者:
    Leykekhman, D.
Weak discrete maximum principle of finite element methods in convex polyhedra
凸多面体有限元法的弱离散极大值原理
  • DOI:
    10.1090/mcom/3560
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Leykekhman, Dmitriy;Li, Buyang
  • 通讯作者:
    Li, Buyang
Fully discrete best-approximation-type estimates in L ∞ ( I ; L 2(Ω) d ) for finite element discretizations of the transient Stokes equations
L ≤ ( I ; L 2(Î) d ) 中的完全离散最佳逼近型估计,用于瞬态 Stokes 方程的有限元离散化
  • DOI:
    10.1093/imanum/drac009
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Behringer, Niklas;Vexler, Boris;Leykekhman, Dmitriy
  • 通讯作者:
    Leykekhman, Dmitriy
Numerical analysis of sparse initial data identification for parabolic problems
Fully discrete pointwise smoothing error estimates for measure valued initial data
测量值初始数据的完全离散逐点平滑误差估计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dmitriy Leykekhman其他文献

Maximum-norm stability of the finite element Ritz projection under mixed boundary conditions
混合边界条件下有限元Ritz投影的最大范数稳定性
  • DOI:
    10.1007/s10092-016-0198-8
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Dmitriy Leykekhman;Buyang Li
  • 通讯作者:
    Buyang Li
Weak maximum principle of finite element methods for parabolic equations in polygonal domains
  • DOI:
    10.1007/s00211-025-01453-y
  • 发表时间:
    2025-01-20
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Genming Bai;Dmitriy Leykekhman;Buyang Li
  • 通讯作者:
    Buyang Li

Dmitriy Leykekhman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dmitriy Leykekhman', 18)}}的其他基金

Point and state constrained optimal control parabolic problems
点和状态约束最优控制抛物线问题
  • 批准号:
    1522555
  • 财政年份:
    2015
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Local properties of the finite element solutions to PDE constrained optimal control problems
PDE约束最优控制问题有限元解的局部性质
  • 批准号:
    1115288
  • 财政年份:
    2011
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Discontinuous Galerkin Methods for Optimal Control Problems Governed by Advection-Diffusion Equations
平流扩散方程最优控制问题的间断伽辽金法
  • 批准号:
    0811167
  • 财政年份:
    2008
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似海外基金

Stochastic maximal inequalities for semimartingales and their applications to statistics
半鞅的随机最大不等式及其在统计中的应用
  • 批准号:
    24K14866
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Next-Generation Maximal Extractable Value (MEV) Proof Distributed Ledger Architecture
SBIR 第一阶段:下一代最大可提取价值(MEV)证明分布式账本架构
  • 批准号:
    2213017
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Endpoint estimates for geometric maximal operators
几何最大算子的端点估计
  • 批准号:
    23KF0188
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Maximal Subellipticity
最大次椭圆度
  • 批准号:
    2153069
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
On a maximal element of a moduli space of Riemannian metrics
关于黎曼度量模空间的最大元素
  • 批准号:
    22K13916
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Limits to Evolvability Define the Maximal Sustainable Niche of Generalists
进化性的限制定义了通才的最大可持续利基
  • 批准号:
    2147101
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Does a large body mass index require adults to use a greater proportion of their maximal capacity?
大的体重指数是否需要成年人使用更大比例的最大容量?
  • 批准号:
    572958-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Precise operator norm estimates for diverse collections of maximal directional Hilbert transforms
最大方向希尔伯特变换的不同集合的精确算子范数估计
  • 批准号:
    566582-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Topics in Harmonic Analysis: Maximal Functions, Singular Integrals, and Multilinear Inequalities
调和分析主题:极大函数、奇异积分和多重线性不等式
  • 批准号:
    2154835
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Maximal and Scalable Unified Debugging for the JVM Ecosystem
职业:JVM 生态系统的最大且可扩展的统一调试
  • 批准号:
    2131943
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了