Hybrid Multiscale Methods with Applications in Biomaterials and Bioengineering

混合多尺度方法在生物材料和生物工程中的应用

基本信息

  • 批准号:
    1913146
  • 负责人:
  • 金额:
    $ 17.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

On the research side, this project aims to develop experimentally guided, hybrid multiscale models and methods to study complex biological systems and problems arising in biomaterials and bioengineering (a) sprouting angiogenesis during vascularization; (b) bacterial swarming during biofilm formation. This research will have many benefits to multiscale problems and relevant applications in biomaterials, tissue regeneration and biomedical engineering, which include bioprinting technology for fabricating tissues and organs, study of cell motions, drug design and ultimately regenerative medicine. These methods can be used as hypothesis generating and testing tools for biologists and bioengineers. Through collaboration with experimentalists, the PI will develop a hybrid multiscale approach to better understand complex mechanisms in the vascularization and the biofilm growth. On the educational side, this project will not only provide multidisciplinary research training to graduate and undergraduate students, but also promote awareness and interest in computational mathematics and mathematical biology among underrepresented minority groups.For the thrust (a), motivated by new findings in sprouting angiogenesis in bioprinting technology, the PI will integrate models for angiogenic signaling pathways with that for the mechanical motion. In particular, we employ typically coarse-grained continuum models (reaction-diffusion (RD) systems) to describe the dynamics of vascular-endothelial-growth-factor (VEGF) and nutrients/oxygen, a mechanical model for the extra-cellular matrix (ECM) based on the finite element method (FEM), and couple a discrete multicellular lattice model based on the kinetic Monte Carlo (KMC) algorithm to describe the cellular dynamics. Communication between the microscale model and the continuum ones is carried out via a suite of multiscale protocols. For the thrust (b), the PI will study several mechanisms responsible for bacterial swarming during biofilm formation, such as bacterial chemotaxis, interaction between bacteria, bacterial shapes, etc. In the proposed hybrid agent-based model, bacteria are characterized by self-propelled particles (SPP) or self-propelled rods (SPR) and the dynamics of extracellular polymeric substances (EPS) in the environment is described by continuously changing fields. The multiscale model is described by a system of ordinary and partial differential equations. The research outcomes consist of a set of hybrid multiscale models, detailed implementation of the models, and accompanying in silico analysis tools for simulating tissue formation and ultimately 3D biofabrication involving angiogenesis and vascularization. The tools can provide efficient ways to systematically test the influence of individual cellular features under a spectrum of environmental conditions and to study the collective behavior of bacterial colonies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在研究方面,该项目旨在开发实验指导的混合多尺度模型和方法,以研究复杂的生物系统和生物材料和生物工程中出现的问题(a)血管形成过程中的发芽血管生成;(b)生物膜形成过程中的细菌群。这项研究将有助于解决生物材料、组织再生和生物医学工程中的多尺度问题和相关应用,包括用于制造组织和器官的生物打印技术、细胞运动研究、药物设计和最终的再生医学。这些方法可以作为生物学家和生物工程师的假设生成和测试工具。通过与实验人员的合作,PI将开发一种混合多尺度方法,以更好地了解血管化和生物膜生长的复杂机制。在教育方面,该项目不仅将为研究生和本科生提供多学科研究培训,还将促进少数族裔对计算数学和数学生物学的认识和兴趣。对于推力(a),受到生物打印技术中发芽血管生成的新发现的激励,PI将整合血管生成信号通路模型与机械运动模型。特别是,我们采用典型的粗粒度连续模型(反应扩散(RD)系统)来描述血管内皮生长因子(VEGF)和营养物质/氧气的动力学,基于有限元法(FEM)的细胞外基质(ECM)的力学模型,以及基于动力学蒙特卡罗(KMC)算法的离散多细胞晶格模型来描述细胞动力学。微尺度模型和连续尺度模型之间的通信是通过一套多尺度协议进行的。对于推力(b), PI将研究生物膜形成过程中细菌聚集的几种机制,如细菌趋化性、细菌之间的相互作用、细菌形状等。在基于混合主体的模型中,细菌被描述为自推进粒子(SPP)或自推进棒(SPR),细胞外聚合物(EPS)在环境中的动力学被描述为不断变化的场。多尺度模型由常微分方程和偏微分方程组成。研究成果包括一组混合多尺度模型,模型的详细实现,以及用于模拟组织形成和最终涉及血管生成和血管化的3D生物制造的计算机分析工具。这些工具可以提供有效的方法来系统地测试环境条件下单个细胞特征的影响,并研究细菌菌落的集体行为。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kinetic Monte Carlo simulations of bi-direction pedestrian flow with different walk speeds
不同步行速度双向行人流的动力学蒙特卡罗模拟
On a class of new nonlocal traffic flow models with look-ahead rules
一类新的具有前瞻规则的非局部交通流模型
  • DOI:
    10.1016/j.physd.2020.132663
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sun, Yi;Tan, Changhui
  • 通讯作者:
    Tan, Changhui
Application of the dynamic Monte Carlo method to pedestrian evacuation dynamics
  • DOI:
    10.1016/j.amc.2023.127876
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nutthavuth Tamang;Yi Sun
  • 通讯作者:
    Nutthavuth Tamang;Yi Sun
Accelerated kinetic Monte Carlo methods for general nonlocal traffic flow models
一般非局部交通流模型的加速动力学蒙特卡罗方法
  • DOI:
    10.1016/j.physd.2023.133657
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sun, Yi;Tan, Changhui
  • 通讯作者:
    Tan, Changhui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yi Sun其他文献

Integrating local and partial network view for routing on scale-free networks
集成本地和部分网络视图以在无标度网络上进行路由
  • DOI:
    10.1007/s11432-012-4655-y
  • 发表时间:
    2012-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mingdong Tang;Guoqiang Zhang;Yi Sun;Jianxun Liu;Jing Yang;Tao Lin
  • 通讯作者:
    Tao Lin
Hybrid malware detection approach with feedback-directed machine learning
具有反馈导向机器学习的混合恶意软件检测方法
  • DOI:
    10.1007/s11432-018-9615-8
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhetao Li;Wenli Li;Fuyuan Lin;Yi Sun;Min Yang;Y. Zhang;Zhibo Wang
  • 通讯作者:
    Zhibo Wang
Software-triggered contrast-enhanced three-dimensional MR angiography of the intracranial arteries.
软件触发颅内动脉对比增强三维 MR 血管造影。
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Isoda;Yasuo Takehara;S. Isogai;H. Takeda;Tokutaro Tanaka;Motoichirou Takahashi;A. Nozaki;Yi Sun
  • 通讯作者:
    Yi Sun
Design, testing and modelling of a tuneable GER fluid damper under shear mode
剪切模式下可调 GER 流体阻尼器的设计、测试和建模
  • DOI:
    10.1088/1361-665x/ab914a
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Yi Sun;Yining Huang;Min Wang;Jinbo Wu;Shujin Yuan;JiHeng Ding;Yan Peng;Huayan Pu;Shaorong Xie;Jun Luo
  • 通讯作者:
    Jun Luo
WLC17-5: Improving Mobile Station Energy Efficiency in IEEE 802.16e WMAN by Burst Scheduling
WLC17-5:通过突发调度提高 IEEE 802.16e WMAN 中的移动站能源效率
  • DOI:
    10.1109/glocom.2006.713
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinglin Shi;Gengfa Fang;Yi Sun;Jihua Zhou;Zhongcheng Li;E. Dutkiewicz
  • 通讯作者:
    E. Dutkiewicz

Yi Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yi Sun', 18)}}的其他基金

CIF:Small:Developing Theory of Spatiotemporal-Resolution and Spatiotemporal-Localization Algorithms for Single-Molecule Localization Microscopy
CIF:Small:发展单分子定位显微镜的时空分辨率和时空定位算法理论
  • 批准号:
    2313072
  • 财政年份:
    2023
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Standard Grant
Hybrid Kinetic Monte Carlo Methods with Applications in Biofabrication and Epidemics
混合动力学蒙特卡罗方法在生物制造和流行病中的应用
  • 批准号:
    2208467
  • 财政年份:
    2022
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Standard Grant
Conformal Field Theory, Cryo-Electron Microscopy, and Neural Networks
共形场论、冷冻电子显微镜和神经网络
  • 批准号:
    2054838
  • 财政年份:
    2021
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Standard Grant
Quantum Groups, Special Functions, and Integrable Probability
量子群、特殊函数和可积概率
  • 批准号:
    2039183
  • 财政年份:
    2020
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Standard Grant
Quantum Groups, Special Functions, and Integrable Probability
量子群、特殊函数和可积概率
  • 批准号:
    1701654
  • 财政年份:
    2017
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Standard Grant
Hybrid Computational Methods and Algorithms for Complex Biological Systems
复杂生物系统的混合计算方法和算法
  • 批准号:
    1620212
  • 财政年份:
    2016
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Standard Grant
Multiscale Computational Methods with Applications in Materials Science and Tissue Engineering
多尺度计算方法在材料科学和组织工程中的应用
  • 批准号:
    1318866
  • 财政年份:
    2013
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a STORM System to Establish a Nanoscopy Laboratory at the City College of New York
MRI:购买 STORM 系统以在纽约城市学院建立纳米显微镜实验室
  • 批准号:
    1337746
  • 财政年份:
    2013
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
  • 批准号:
    2338804
  • 财政年份:
    2024
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Continuing Grant
Multiscale topographic methods for landslide monitoring and prediction
滑坡监测与预测的多尺度地形方法
  • 批准号:
    23KF0180
  • 财政年份:
    2023
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2404521
  • 财政年份:
    2023
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Standard Grant
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
  • 批准号:
    2309670
  • 财政年份:
    2023
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Standard Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Standard Grant
CDS&E: HAM3R: Heterogeneous Automated Management of Multiscale Methods and Resources
CDS
  • 批准号:
    2204011
  • 财政年份:
    2022
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Standard Grant
Designing Plk1 Inhibitors through multiscale computational and experimental methods
通过多尺度计算和实验方法设计 Plk1 抑制剂
  • 批准号:
    10580435
  • 财政年份:
    2022
  • 资助金额:
    $ 17.91万
  • 项目类别:
Research and Development of Numerical Methods of Multiphysics and Multiscale Modeling for Emerging Technology Applications and Designs
新兴技术应用和设计的多物理场和多尺度建模数值方法的研究和开发
  • 批准号:
    RGPIN-2018-05364
  • 财政年份:
    2022
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Randomized Multiscale Methods for Heterogeneous Nonlinear Partial Differential Equations
职业:异质非线性偏微分方程的随机多尺度方法
  • 批准号:
    2145364
  • 财政年份:
    2022
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Continuing Grant
Temporal Splitting Methods for Multiscale Problems
多尺度问题的时间分裂方法
  • 批准号:
    2208498
  • 财政年份:
    2022
  • 资助金额:
    $ 17.91万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了