Temporal Splitting Methods for Multiscale Problems

多尺度问题的时间分裂方法

基本信息

  • 批准号:
    2208498
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

In many physical systems of practical interest, phenomena occur in heterogeneous media with properties varying at multiple scales and having disparate values on each scale. Examples include multi-physics processes in filters, membranes, and Earth's subsurface. Standard numerical approaches for simulating these phenomena to obtain accurate predictions require tremendous computational effort. The goal of this project is to develop a unified framework for accurately and efficiently simulating complex multiscale, time dependent physical phenomena that involve flow, transport, and mechanical deformations that arise in porous media. The project will support education by training a new generation of computational mathematicians who work in multidisciplinary research.This project involves the development and analyses of novel temporal splitting methods that are designed to overcome challenges that arise when simulating multiscale, time-dependent physical phenomena. The methods are based on solution decomposition for non-stationary multiscale models and will consider space and time heterogeneities that are highly coupled. The goal is to provide a general framework that combines temporal splitting algorithms and spatial multiscale decompositions with a rigorous theoretical analysis of the new algorithms. The specific objectives of the project are: (i) to study temporal splitting algorithms for simulations of non-stationary multiscale models; (ii) to understand space and time interaction in multiscale models; (iii) to analyze temporal splitting approaches to guide the choice for space decomposition; (iv) to design novel splitting approaches for nonlinear models; and (v) to test and demonstrate proposed approaches for improving predictions of multiscale, time-dependent physical phenomena in engineering and geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多实际感兴趣的物理系统中,现象发生在非均匀介质中,其性质在多个尺度上变化,并且在每个尺度上具有不同的值。例子包括过滤器、膜和地球地下的多物理过程。模拟这些现象以获得准确预测的标准数值方法需要大量的计算工作。该项目的目标是开发一个统一的框架,用于准确有效地模拟复杂的多尺度,时间依赖的物理现象,涉及流动,运输和机械变形,出现在多孔介质中。该项目将通过培训从事多学科研究的新一代计算数学家来支持教育,该项目涉及开发和分析新颖的时间分裂方法,旨在克服模拟多尺度、随时间变化的物理现象时出现的挑战。该方法是基于非平稳多尺度模型的解分解,并将考虑高度耦合的空间和时间异质性。我们的目标是提供一个通用的框架,结合时间分裂算法和空间多尺度分解与严格的理论分析的新算法。该项目的具体目标是:(i)研究用于非平稳多尺度模型模拟的时间分裂算法;(ii)理解多尺度模型中空间和时间的相互作用;(iii)分析时间分裂方法以指导空间分解的选择;(iv)设计用于非线性模型的新分裂方法;(iv)设计用于非线性模型的新分裂方法;(iv)设计用于非线性模型的新分裂方法。以及(v)测试和演示用于改进多尺度预测的建议方法,时间--该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值进行评估来支持和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multicontinuum homogenization and its relation to nonlocal multicontinuum theories
多重连续介质均匀化及其与非局部多重连续介质理论的关系
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yalchin Efendiev其他文献

Nonlocal transport equations in multiscale media. Modeling, dememorization, and discretizations
  • DOI:
    10.1016/j.jcp.2022.111555
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yalchin Efendiev;Wing Tat Leung;Wenyuan Li;Sai-Mang Pun;Petr N. Vabishchevich
  • 通讯作者:
    Petr N. Vabishchevich
Iterative oversampling technique for constraint energy minimizing generalized multiscale finite element method in the mixed formulation
  • DOI:
    10.1016/j.amc.2021.126622
  • 发表时间:
    2022-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Siu Wun Cheung;Eric Chung;Yalchin Efendiev;Wing Tat Leung;Sai-Mang Pun
  • 通讯作者:
    Sai-Mang Pun
基于均匀化理论的页岩基岩运移机制尺度升级研究
Efficient hybrid explicit-implicit learning for multiscale problems
  • DOI:
    10.1016/j.jcp.2022.111326
  • 发表时间:
    2022-10-15
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Yalchin Efendiev;Wing Tat Leung;Guang Lin;Zecheng Zhang
  • 通讯作者:
    Zecheng Zhang
Computational multiscale method for parabolic wave approximations in heterogeneous media
  • DOI:
    10.1016/j.amc.2022.127044
  • 发表时间:
    2022-07-15
  • 期刊:
  • 影响因子:
  • 作者:
    Eric Chung;Yalchin Efendiev;Sai-Mang Pun;Zecheng Zhang
  • 通讯作者:
    Zecheng Zhang

Yalchin Efendiev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yalchin Efendiev', 18)}}的其他基金

Adaptive Multiscale Simulation Framework for Reduced-Order Modeling in Perforated Domains
穿孔域降阶建模的自适应多尺度仿真框架
  • 批准号:
    1620318
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Advanced Discretization Techniques and Applications (ADTA)
高级离散化技术和应用(ADTA)
  • 批准号:
    1438451
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Iterative upscaling of fluid flows in nonlinear deformable porous media
非线性可变形多孔介质中流体流动的迭代放大
  • 批准号:
    0811180
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
DDDAS-TMRP: Collaborative Research: Adaptive Data-Driven Sensor Configuration, Modeling, and Deployment for Oil, Chemical, and Biological Contamination near Coastal Facilities
DDDAS-TMRP:协作研究:沿海设施附近石油、化学和生物污染的自适应数据驱动传感器配置、建模和部署
  • 批准号:
    0540136
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Analysis, design, and implementation of novel high-order operator splitting methods
新型高阶算子分裂方法的分析、设计与实现
  • 批准号:
    574878-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    University Undergraduate Student Research Awards
Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
  • 批准号:
    RGPIN-2019-04803
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
  • 批准号:
    RGPIN-2019-04803
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis, design, and implementation of novel high-order operator splitting methods
新型高阶算子分裂方法的分析、设计与实现
  • 批准号:
    564781-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    University Undergraduate Student Research Awards
Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
  • 批准号:
    RGPIN-2019-04803
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis, design, and implementation of novel high-order operator splitting methods
新型高阶算子分裂方法的分析、设计与实现
  • 批准号:
    551586-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    University Undergraduate Student Research Awards
Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
  • 批准号:
    RGPIN-2019-04803
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Splitting methods in optimization: Beyond consistency and convexity.
优化中的分割方法:超越一致性和凸性。
  • 批准号:
    DGECR-2019-00314
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Launch Supplement
Splitting methods for nonconvex and inconsistent problems
非凸和不一致问题的分裂方法
  • 批准号:
    502917-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Postdoctoral Fellowships
Splitting methods for nonconvex and inconsistent problems
非凸和不一致问题的分裂方法
  • 批准号:
    502917-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了