Learning Dynamics from Data: Discovering Interaction Laws of Particle and Agent Systems
从数据中学习动力学:发现粒子和代理系统的相互作用规律
基本信息
- 批准号:1913243
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Particle and agent-based systems are ubiquitous in science, for example, particle systems in fundamental physics, agent-based systems that model opinion dynamics under the social influence, prey-predator dynamics, flocking and swarming, and phototaxis in cell dynamics. To understand the mechanism of these systems, a fundamental challenge is to infer the laws of interaction between the particles and agents from observational data. This project aims to develop mathematical and statistical theory and computationally efficient algorithms for learning these interaction laws from observations in the form of trajectories of the systems. The theory provides performance guarantees and uncertainty quantification in the estimations, therefore providing foundations for model selection and for optimal data collection. The algorithms are scalable to large data sets, avoiding the curse of dimensionality, and are applicable to a wide variety of systems from Physics, Biology, Ecology and Social Sciences.The interaction laws vary largely for different systems, and there is no analytical form in general. The PIs propose non-parametric statistical inference approaches for learning the interaction laws, with no reference or assumption on their analytical form. The research will develop a systematical learning theory for the non-parametric regression of the interaction kernels, whose values are not observed and can not be computed from the data of trajectories of the particles or agents in the system. The theory will study the identifiability of the interaction kernels, the consistency of the estimators, and the optimal choice of hypothesis spaces to achieve optimal rate of convergence of the estimators. With the guidance from the learning theory, we will design computationally efficient algorithms with the following features: (i) avoiding the curse of dimensionality by focusing on the intrinsic dimension of the interaction kernels; (ii) with theoretical guarantee and uncertainty quantification which can be used for model selection and optimal data collection; (iii) scalable to large data sets by implementing in parallel.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于粒子和主体的系统在科学中无处不在,例如,基础物理学中的粒子系统,基于主体的系统,在社会影响下对意见动态进行建模,捕食者-捕食者动态,群集和群集,以及细胞动力学中的趋光性。为了理解这些系统的机制,一个基本的挑战是从观测数据中推断粒子和代理之间的相互作用定律。该项目旨在开发数学和统计理论以及计算效率高的算法,用于从系统轨迹形式的观测中学习这些相互作用定律。该理论提供了性能保证和估计的不确定性量化,从而为模型选择和最佳数据收集提供了基础。该算法可扩展到大数据集,避免了维数灾难,适用于物理学,生物学,生态学和社会科学的各种各样的系统。PI提出了非参数统计推断方法来学习相互作用定律,没有参考或假设其分析形式。该研究将为相互作用核的非参数回归建立一个系统的学习理论,其值不可观测,也无法从系统中粒子或代理的轨迹数据中计算。该理论将研究相互作用核的可识别性,估计量的一致性,以及假设空间的最佳选择,以实现估计量的最佳收敛速度。在学习理论的指导下,我们将设计具有以下特点的计算效率高的算法:(i)通过关注相互作用核的内在维数来避免维数灾难;(ii)具有理论保证和不确定性量化,可用于模型选择和最佳数据收集;(iii)通过并行实施可扩展到大型数据集。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the identifiability of interaction functions in systems of interacting particles
- DOI:10.1016/j.spa.2020.10.005
- 发表时间:2019-12
- 期刊:
- 影响因子:1.4
- 作者:Zhongyan Li;F. Lu;M. Maggioni;Sui Tang;C. Zhang
- 通讯作者:Zhongyan Li;F. Lu;M. Maggioni;Sui Tang;C. Zhang
Nonparametric inference of interaction laws in systems of agents from trajectory data
从轨迹数据中非参数推断智能体系统中的相互作用规律
- DOI:10.1073/pnas.1822012116
- 发表时间:2019
- 期刊:
- 影响因子:11.1
- 作者:Lu, Fei;Zhong, Ming;Tang, Sui;Maggioni, Mauro
- 通讯作者:Maggioni, Mauro
Unsupervised learning of observation functions in state space models by nonparametric moment methods
通过非参数矩方法对状态空间模型中的观测函数进行无监督学习
- DOI:10.3934/fods.2023002
- 发表时间:2023
- 期刊:
- 影响因子:2.3
- 作者:An, Qingci;Kevrekidis, Yannis;Lu, Fei;Maggioni, Mauro
- 通讯作者:Maggioni, Mauro
Learning Interaction Kernels in Stochastic Systems of Interacting Particles from Multiple Trajectories
学习多轨迹相互作用粒子随机系统中的相互作用核
- DOI:10.1007/s10208-021-09521-z
- 发表时间:2021
- 期刊:
- 影响因子:3
- 作者:Lu, Fei;Maggioni, Mauro;Tang, Sui
- 通讯作者:Tang, Sui
Learning Interaction Kernels for Agent Systems on Riemannian Manifolds
学习黎曼流形上代理系统的交互内核
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Mauro Maggioni, Jason J
- 通讯作者:Mauro Maggioni, Jason J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fei Lu其他文献
Formation of supermolecular chiral gels from L-aspartic acid-based perylenebisimides and benzene dicarboxylic acids
L-天冬氨酸基苝双酰亚胺和苯二甲酸形成超分子手性凝胶
- DOI:
10.1039/c7nj01107e - 发表时间:
2017-07 - 期刊:
- 影响因子:0
- 作者:
Yizhi Liu;Xinpei Gao;Mingwei Zhao;Fei Lu;Liqiang Zheng - 通讯作者:
Liqiang Zheng
Gas-jet propelled hemostats for targeted hemostasis in wounds with irregular shape and incompressibility.
气体喷射止血器,用于对形状不规则且不可压缩的伤口进行定向止血。
- DOI:
10.1039/d3tb00165b - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Guofang Zhou;Fei Lu;S. Shang;Dahua Shou;Wenyi Wang;Kun Yu;Ruiqi Xie;Guangqian Lan;E. Hu - 通讯作者:
E. Hu
Three-axis closed-loop optically pumped magnetometer operated in the SERF regime
在 SERF 状态下运行的三轴闭环光泵磁力计
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.8
- 作者:
Yeguang Yan;Jixi Lu;Shaowen Zhang;Fei Lu;Kaifeng Yin;Kun Wang;Binquan Zhou;Gang Liu - 通讯作者:
Gang Liu
A snapshot of the Chinese SOL Project.
中国 SOL 项目的快照。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Changbao Li;Jiuhai Zhao;Hongling Jiang;Y. Geng;Yuanyuan Dai;Huajie Fan;Dongfen Zhang;Jinfeng Chen;Fei Lu;Jinfeng Shi;Shouhong Sun;Jianjun Chen;Xiaohua Yang;Chen Lu;Mingsheng Chen;Zhukuan Cheng;H. Ling;Ying Wang;Yongbiao Xue;Chuanyou Li - 通讯作者:
Chuanyou Li
Robust First and Second-Order Differentiation for Regularized Optimal Transport
正则化最优传输的鲁棒一阶和二阶微分
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
X. Li;Fei Lu;Molei Tao;Felix X. - 通讯作者:
Felix X.
Fei Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fei Lu', 18)}}的其他基金
I-Corps: Solid State Circuit Breakers Technology to Market
I-Corps:固态断路器技术推向市场
- 批准号:
2316031 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Learning Kernels in Operators from Data: Learning Theory, Scalable Algorithms and Applications
职业:从数据中学习算子的内核:学习理论、可扩展算法和应用
- 批准号:
2238486 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Data-Driven Stochastic Model Reduction and Its Applications in Data Assimilation
数据驱动的随机模型约简及其在数据同化中的应用
- 批准号:
1821211 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Understanding the transmission dynamics of norovirus with microbial data in wastewater and machine learning algorithms
利用废水中的微生物数据和机器学习算法了解诺如病毒的传播动力学
- 批准号:
22KJ2358 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Multiscale data geometric networks for learning representations and dynamics of biological systems
用于学习生物系统表示和动力学的多尺度数据几何网络
- 批准号:
2327211 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Learning Nonlinear Dynamics from Data Using Sparse Optimization and Compressed Sensing
使用稀疏优化和压缩感知从数据中学习非线性动力学
- 批准号:
RGPIN-2018-06135 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning for Prediction and Control of Complex Dynamics Based on Integration of Mathematical and Data-Driven Methods
基于数学和数据驱动方法集成的复杂动力学预测和控制的机器学习
- 批准号:
22H00516 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Learning Nonlinear Dynamics from Data Using Sparse Optimization and Compressed Sensing
使用稀疏优化和压缩感知从数据中学习非线性动力学
- 批准号:
RGPIN-2018-06135 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Learning Nonlinear Dynamics from Data Using Sparse Optimization and Compressed Sensing
使用稀疏优化和压缩感知从数据中学习非线性动力学
- 批准号:
RGPIN-2018-06135 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Learning Nonlinear Dynamics from Data Using Sparse Optimization and Compressed Sensing
使用稀疏优化和压缩感知从数据中学习非线性动力学
- 批准号:
RGPIN-2018-06135 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Identification of latent skill dynamics and visualization of learning effect by educational data mining
通过教育数据挖掘识别潜在技能动态并可视化学习效果
- 批准号:
19H01728 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Machine learning for extracting latent dynamics from data
用于从数据中提取潜在动态的机器学习
- 批准号:
18H03287 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)