Fundamental Symmetries using Lattice QCD with the Gradient Flow
使用带有梯度流的格子 QCD 的基本对称性
基本信息
- 批准号:1913287
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-11-15 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Even with the extraordinary success of the the Standard Model of Particle Physics (SM), certain phenomena observed in the Universe that have profound consequences to life as we know it, such as the matter-antimatter asymmetry, the hierarchy problem, and the existence of dark matter and dark energy, remain unexplained. Therefore any physical description of such phenomena requires a theory that goes beyond the Standard Model (BSM), while at the same time encompassing the Standard Model and its predictions related to ordinary matter. A physical quantity sensitive to the symmetry breaking responsible for the matter-antimatter asymmetry is the electric dipole moment (EDM) of particles such as neutron and proton. The PI will study the impact of theories beyond the Standard Model on the matter-antimatter asymmetry in the universe, calculating the electric dipole moments of protons and neutrons induced by such theories. In addition to investigating the role played by theories beyond the Standard Model on the observed matter-antimatter asymmetry in the universe, which is one of the biggest unanswered questions in particle and nuclear physics, the PI will mentor a student engaged in this research.This project uses a new method, based on the so-called gradient flow, for the determination of the Quantum Chromodynamics (QCD) component of key BSM matrix elements related to quark and strong theta-CP violations. This set of matrix elements impacts the understanding of electric dipole moments (EDMs) within nucleons and nuclei (a key signature of BSM physics) and their determination will lay the foundation for extraction of BSM observables from future low-energy, high-intensity experimental measurements. The use of the gradient flow will circumvent some of the big challenges posed by the determination of the above-mentioned matrix elements, introducing a new scale, the flow time, that will mitigate divergences present in the calculations. Additionally the gradient flow is perfectly suited to be adopted on QCD calculations on the lattice. Lattice QCD is, as today, the only robust and theoretically sound approach to non-perturbative QCD calculations. The new method the PI has developed is ideally suited to calculate all the CP-violating contributions to the EDM of nucleons and light nuclei. Most of the tools and technique developed in this project are alternative to traditional methods and can be easily applied to other matrix element calculations contributing to the study of dark matter candidates.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管粒子物理(SM)标准模型取得了非凡的成功,但在宇宙中观察到的某些对我们所知的生命具有深远影响的现象,例如物质-反物质不对称性、层次结构问题以及暗物质和暗能量的存在,仍然无法解释。因此,对此类现象的任何物理描述都需要一种超越标准模型(BSM)的理论,同时涵盖标准模型及其与普通物质相关的预测。对造成物质-反物质不对称性的对称破缺敏感的物理量是中子和质子等粒子的电偶极矩(EDM)。 PI将研究标准模型之外的理论对宇宙中物质-反物质不对称性的影响,计算由这些理论引起的质子和中子的电偶极矩。除了研究标准模型之外的理论对宇宙中观测到的物质-反物质不对称性(这是粒子和核物理中最大的未解答问题之一)所发挥的作用之外,PI还将指导一名从事这项研究的学生。该项目使用一种基于所谓梯度流的新方法来确定与夸克相关的关键BSM矩阵元素的量子色动力学(QCD)分量 和强烈的 theta-CP 违规。这组矩阵元素影响对核子和原子核内电偶极矩 (EDM)(BSM 物理学的关键特征)的理解,它们的确定将为从未来低能、高强度实验测量中提取 BSM 可观测量奠定基础。梯度流的使用将规避上述矩阵元素的确定所带来的一些重大挑战,引入新的尺度,即流动时间,这将减轻计算中存在的分歧。此外,梯度流非常适合用于晶格 QCD 计算。与今天一样,格子 QCD 是唯一稳健且理论上合理的非微扰 QCD 计算方法。 PI 开发的新方法非常适合计算核子和轻核 EDM 的所有 CP 破坏贡献。该项目中开发的大多数工具和技术都可以替代传统方法,并且可以轻松应用于有助于暗物质候选者研究的其他矩阵元计算。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Short flow-time coefficients of CP -violating operators
- DOI:10.1103/physrevd.102.034509
- 发表时间:2020-05
- 期刊:
- 影响因子:5
- 作者:Matthew D. Rizik;C. Monahan;A. Shindler
- 通讯作者:Matthew D. Rizik;C. Monahan;A. Shindler
One-loop matching for quark dipole operators in a gradient-flow scheme
- DOI:10.1007/jhep04(2022)050
- 发表时间:2021-11
- 期刊:
- 影响因子:5.4
- 作者:E. Mereghetti;C. Monahan;Matthew D. Rizik;A. Shindler;P. Stoffer
- 通讯作者:E. Mereghetti;C. Monahan;Matthew D. Rizik;A. Shindler;P. Stoffer
A novel nonperturbative renormalization scheme for local operators
一种新颖的局部算子非扰动重整化方案
- DOI:10.22323/1.396.0155
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Monahan, Chris;Hasenfratz, Anna;Rizik, Matthew David;Shindler, Andrea;Witzel, Oliver
- 通讯作者:Witzel, Oliver
Nonperturbative renormalization of the quark chromoelectric dipole moment with the gradient flow: Power divergences
夸克色电偶极矩与梯度流的非微扰重整化:功率散度
- DOI:10.1103/physrevd.104.074516
- 发表时间:2021
- 期刊:
- 影响因子:5
- 作者:Kim, Jangho;Luu, Thomas;Rizik, Matthew D.;Shindler, Andrea
- 通讯作者:Shindler, Andrea
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Shindler其他文献
QED with massive photons for precision physics: zero modes and first result for the hadron spectrum
用于精密物理的大量光子 QED:零模式和强子谱的第一个结果
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
J. Tsang;M. Clark;M. Della Morte;Zack Hall;B. Hörz;Amy Nicholson;Andrea Shindler;A. Walker;Haobo Yan - 通讯作者:
Haobo Yan
One-loop matching of the emCP/em-odd three-gluon operator to the gradient flow
电磁共形功率/电磁奇数三胶子算符到梯度流的单圈匹配
- DOI:
10.1016/j.physletb.2023.138301 - 发表时间:
2023-12-10 - 期刊:
- 影响因子:4.500
- 作者:
Òscar L. Crosas;Christopher J. Monahan;Matthew D. Rizik;Andrea Shindler;Peter Stoffer - 通讯作者:
Peter Stoffer
Using Gradient Flow to Renormalise Matrix Elements for Meson Mixing and Lifetimes
使用梯度流重新规范化介子混合和寿命的矩阵元素
- DOI:
10.22323/1.453.0263 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Matthew Black;R. Harlander;Fabian Lange;Antonio Rago;Andrea Shindler;Oliver Witzel - 通讯作者:
Oliver Witzel
Beyond-the-Standard-Model matrix elements with the gradient flow
具有梯度流的超标准模型矩阵元素
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Andrea Shindler;Jordy de Vries;Thomas Luu - 通讯作者:
Thomas Luu
Andrea Shindler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Shindler', 18)}}的其他基金
Unravelling the Origin of the Matter-Antimatter Asymmetry in the Universe
揭开宇宙中物质-反物质不对称的起源
- 批准号:
2209185 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
A Symposium: Learning and the Brain: Myths and Realities, September 2000, Art Institute of Chicago
研讨会:学习与大脑:神话与现实,2000 年 9 月,芝加哥艺术学院
- 批准号:
0003877 - 财政年份:2000
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Research in Symmetries at the University of Kentucky
REU 网站:肯塔基大学对称性研究
- 批准号:
2349261 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Geometric evolution of spaces with symmetries
具有对称性的空间的几何演化
- 批准号:
DP240101772 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Discovery Projects
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
- 批准号:
EP/Y006712/1 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Fellowship
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
- 批准号:
2339682 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
- 批准号:
EP/X01276X/1 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Fellowship
Characterization of Systematic Effects in Ultracold Neutron Tests of Fundamental Symmetries
基本对称性超冷中子测试中系统效应的表征
- 批准号:
2310015 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
- 批准号:
2310279 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
- 批准号:
2247202 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CAREER: Low-energy Nuclear Physics and Fundamental Symmetries with Neutrons and Cryogenic Technologies
职业:低能核物理以及中子和低温技术的基本对称性
- 批准号:
2232117 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
- 批准号:
2246820 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant