SBIR Phase I: Democratizing Access to Data Analytics & Physics-Based Insights for Car Buyers
SBIR 第一阶段:数据分析访问民主化
基本信息
- 批准号:1914292
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) project is to democratize access to scientific techniques in vehicle energy modeling, making them intuitively available to all car buyers across the country. Unfortunately, the typical car buyer does not currently have access to information to determine their fuel consumption, costs, and range viability for different vehicles they may be considering for purchase on their own driving conditions. Further, car buyers typically do not have measurements of their mobility patterns in their current vehicle, making it further difficult to compare cars. Thus, car buyers have limited ability to understand the economic value in choosing a fuel-efficient vehicle which may cost more upfront but save them significant money in the long run. By providing greater access to information on the fuel consumption and costs that car buyers will experience in any vehicle they are considering, this project can accelerate the uptake of fuel-efficient vehicles. By accelerating the uptake of fuel-efficient cars, the team projects this project can enable up to 30-50 billion gallons of avoided petroleum use, and up to $450-680 billion of avoided fueling costs.This SBIR Phase 1 project proposes to apply data science, machine learning, and convex optimization techniques to develop and apply vehicle energy models in circumstances where only sparse and disparate sources of data are available. These circumstances represent use cases that are typically encountered by the vast majority of car buyers. To overcome the challenges posed by only sparse and disparate sources of data being available during the car comparison process for car buyers, this project will develop techniques for formulation and calibration of vehicle energy models using time-resolved, trip-resolved, and tank-resolved fuel consumption data. Further, this project will develop probabilistic techniques for trip profile generation to create speed/terrain profiles for given trips using origin-destination-departure time data or intermittent measurements of speed-position along a trip. These probabilistic techniques for trip profile generation can be combined with vehicle energy models to allow car buyers to compare any car they are considering for purchase, on their own driving conditions. The techniques developed will be made available for use by car buyers through implementation in a smartphone app and web-based tools that are easy and intuitive for car buyers to use during their car shopping process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个小企业创新研究(SBIR)项目的更广泛的影响/商业潜力是使汽车能源建模中的科学技术民主化,使全国所有汽车购买者都能直观地获得这些技术。不幸的是,典型的汽车购买者目前无法获得信息来确定他们的燃料消耗、成本和他们可能考虑在自己的驾驶条件下购买的不同车辆的续航能力。此外,汽车购买者通常不具有对他们当前车辆的移动性模式的测量,使得更难以比较汽车。因此,汽车购买者有有限的能力来理解经济价值,在选择一个省油的车辆,可能会花费更多的前期,但节省他们大量的钱,从长远来看。通过提供更多的机会,了解汽车购买者在他们考虑的任何车辆上将经历的燃料消耗和成本信息,该项目可以加速采用节能车辆。通过加速采用节能汽车,该团队预计该项目可以避免高达300 - 500亿加仑的石油使用,并避免高达4500 - 6800亿美元的燃料成本。SBIR第一阶段项目提出应用数据科学,机器学习,和凸优化技术,以开发和应用车辆能量模型的情况下,只有稀疏和不同的数据源是可用的。这些情况代表了绝大多数汽车购买者通常遇到的用例。为了克服在汽车购买者的汽车比较过程中只有稀疏和不同的数据源所带来的挑战,该项目将开发使用时间分辨、行程分辨和油箱分辨的燃料消耗数据来制定和校准车辆能源模型的技术。此外,该项目将开发用于生成行程剖面的概率技术,以便使用起点-目的地-出发时间数据或沿行程沿着的速度-位置的间歇测量来生成给定行程的速度/地形剖面。这些用于行程配置文件生成的概率技术可以与车辆能量模型相结合,以允许汽车购买者根据自己的驾驶条件比较他们正在考虑购买的任何汽车。通过智能手机应用程序和基于网络的工具,购车者可以在购车过程中使用开发的技术。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samveg Saxena其他文献
Quantifying the Flexibility for Electric Vehicles to Offer Demand Response to Reduce Grid Impacts without Compromising Individual Driver Mobility Needs
量化电动汽车提供需求响应的灵活性,以减少电网影响,同时不影响个人驾驶员的移动需求
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Samveg Saxena;Jason S. MacDonald;D. Black;S. Kiliccote - 通讯作者:
S. Kiliccote
Understanding fuel savings mechanisms from hybrid vehicles to guide optimal battery sizing for India
了解混合动力汽车的燃油节省机制,以指导印度的最佳电池尺寸
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Samveg Saxena;Amol A. Phadke;Anand R. Gopal;V. Srinivasan - 通讯作者:
V. Srinivasan
Samveg Saxena的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samveg Saxena', 18)}}的其他基金
SBIR Phase II: Data Analytics and Physics-Based Insights into Vehicle Mobility Patterns
SBIR 第二阶段:基于数据分析和基于物理的车辆移动模式洞察
- 批准号:
2036018 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
UK involvement in LSST: Phase C (Imperial component)
英国参与 LSST:C 阶段(帝国部分)
- 批准号:
ST/X001326/1 - 财政年份:2025
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
IUCRC Phase I University of Wisconsin-Milwaukee: Center for Concrete Advancement Network (CAN), Lead Site
IUCRC 第一阶段威斯康星大学密尔沃基分校:混凝土进步网络中心 (CAN),主要站点
- 批准号:
2310861 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
IUCRC Phase III University of Colorado Boulder: Center for Membrane Applications, Science and Technology (MAST)
IUCRC 第三阶段科罗拉多大学博尔德分校:膜应用、科学与技术中心 (MAST)
- 批准号:
2310937 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: Humidity and Temperature Effects on Phase Separation and Particle Morphology in Internally Mixed Organic-Inorganic Aerosol
合作研究:湿度和温度对内部混合有机-无机气溶胶中相分离和颗粒形态的影响
- 批准号:
2412046 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
STTR Phase II: Fabrication and Structural Testing of a 3D Concrete Printed Anchor for Floating Offshore Wind
STTR 第二阶段:用于浮动海上风电的 3D 混凝土打印锚的制造和结构测试
- 批准号:
2333306 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Innovative Glass Inspection for Advanced Semiconductor Packaging
SBIR 第二阶段:先进半导体封装的创新玻璃检测
- 批准号:
2335175 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Intelligent Language Learning Environment
SBIR第二阶段:智能语言学习环境
- 批准号:
2335265 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
- 批准号:
2335283 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
STTR Phase I: Advanced Lithium Metal Anodes for Solid-State Batteries
STTR 第一阶段:用于固态电池的先进锂金属阳极
- 批准号:
2335454 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: FlashPCB Service Commercialization and AI Component Package Identification
SBIR第二阶段:FlashPCB服务商业化和AI组件封装识别
- 批准号:
2335464 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement