Collaborative Research: Uncertainty Quantification, Optimal Designs and Calibration in Computer Experiments

协作研究:计算机实验中的不确定性量化、优化设计和校准

基本信息

  • 批准号:
    1914636
  • 负责人:
  • 金额:
    $ 14.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

From aerospace designs to material science to biomedical studies, today's practice in engineering and physical sciences has made increasing use of computer simulations. How to design the computer simulations, analyze the computer output data, as well as to enhance the accuracy of the computer models are fundamental challenges in computer simulations. This project will focus on the development of a statistical framework for computer experiments, with the goal of developing both theoretical and methodological tools that cover the typical computer simulation pipeline from data collection to modeling and analysis to verification and validation. Specifically, the team plans to establish a new uncertainty quantification theory and foster novel methodologies for data mining, interpretation and decision making. The project will provide accurate, efficient and robust approaches that would make an impact on contemporary computer simulation practice. The project has three major objectives: (i) establish a statistically and computationally efficient uncertainty quantification framework for Gaussian process regression, (ii) propose a general experimental design scheme for multi-fidelity computer experiments, (iii) study the statistical properties and suggest efficient algorithms for novel calibration methods for computer models. The proposed work should lead to methodological development of a generic nature in the design, uncertainty quantification and calibration in computer experiments. The improved uniform error bounds can potentially lead to the use of fewer experimental runs for the same precision. Their significance can go beyond computer experiments such as in spatial statistics, which heavily uses kriging method. The optimal designs for nonstationary Gaussian Process models can help stimulate further development of experimental design theory in more complex situations. Standard approaches in experimental design do not pay much attention to the nonstationary situations. The proposed algorithm can substantially enhance the value of the projected kernel calibration (PKC) method. Although PKC is known to be theoretically superior, there is no known algorithm that can effectively calculate the PKC estimates. Because calibration is used to bridge the gap between computer simulations and physical experiments, this work can be potentially significant. Theoretical and technical advances made in this project can help facilitate further interactions between statistics, applied mathematics and probability theory, through journal publications, student exchange visits and presentations in interdisciplinary conferences, etc.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从航空航天设计到材料科学再到生物医学研究,今天在工程和物理科学领域的实践越来越多地使用计算机模拟。如何设计计算机仿真,分析计算机输出数据,提高计算机模型的准确性是计算机仿真的基本挑战。该项目将侧重于开发计算机实验的统计框架,其目标是开发理论和方法工具,涵盖从数据收集到建模和分析再到验证和确认的典型计算机模拟管道。具体来说,该团队计划建立一种新的不确定性量化理论,并培养数据挖掘、解释和决策的新方法。该项目将提供准确、高效和稳健的方法,对当代计算机模拟实践产生影响。该项目有三个主要目标:(i)为高斯过程回归建立一个统计和计算效率高的不确定性量化框架;(ii)为多保真度计算机实验提出一个通用的实验设计方案;(iii)研究统计特性并为计算机模型的新校准方法提出有效的算法。所建议的工作应导致在设计、不确定度量化和计算机实验校准方面具有通用性质的方法学发展。改进的均匀误差范围可能导致使用更少的实验运行相同的精度。它们的意义可以超越计算机实验,例如大量使用克里格方法的空间统计学。非平稳高斯过程模型的优化设计有助于促进实验设计理论在更复杂情况下的进一步发展。标准的实验设计方法不太注意非平稳情况。该算法可以大大提高投影核校准(PKC)方法的价值。虽然已知PKC在理论上是优越的,但没有已知的算法可以有效地计算PKC估计。由于校准用于弥合计算机模拟和物理实验之间的差距,因此这项工作可能具有潜在的重要意义。该项目取得的理论和技术进步可以通过期刊发表、学生互访和跨学科会议上的演讲等方式,帮助促进统计学、应用数学和概率论之间的进一步互动。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Prediction Properties of Kriging: Uniform Error Bounds and Robustness
Uncertainty Quantification for Bayesian Optimization
  • DOI:
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rui Tuo;Wenjia Wang
  • 通讯作者:
    Rui Tuo;Wenjia Wang
Semi-parametric adjustment to computer models
  • DOI:
    10.1080/02331888.2020.1862113
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Yan Wang;Rui Tuo
  • 通讯作者:
    Yan Wang;Rui Tuo
Kriging Prediction with Isotropic Matern Correlations: Robustness and Experimental Designs
  • DOI:
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rui Tuo;Wenjia Wang
  • 通讯作者:
    Rui Tuo;Wenjia Wang
Hypothesis tests with functional data for surface quality change detection in surface finishing processes
使用功能数据进行假设检验,用于表面精加工过程中表面质量变化检测
  • DOI:
    10.1080/24725854.2022.2113481
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Jin, S.
  • 通讯作者:
    Jin, S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rui Tuo其他文献

Uncertainty Quantification with α-Stable-Process Models
使用 α 稳定过程模型进行不确定性量化
  • DOI:
    10.5705/ss.202015.0367
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Rui Tuo
  • 通讯作者:
    Rui Tuo
A finite element method for elliptic problems with observational boundary data
观测边界数据椭圆问题的有限元方法
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiming Chen;Rui Tuo;Wenlong Zhang
  • 通讯作者:
    Wenlong Zhang
Universal Convergence of Kriging
克里金法的普遍收敛性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenjia Wang;Rui Tuo;C. F. Wu
  • 通讯作者:
    C. F. Wu
Analysis Surface Flashover Characteristics of Epoxy Resin/BN Thermal Insulation Material
环氧树脂/BN绝热材料表面闪络特性分析
Prediction based on the Kennedy-O’Hagan calibration model: asymptotic consistency and other properties
基于 Kennedy-OâHagan 校准模型的预测:渐近一致性和其他属性
  • DOI:
    10.5705/ss.202016.0209
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Rui Tuo;Jeff Wu
  • 通讯作者:
    Jeff Wu

Rui Tuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rui Tuo', 18)}}的其他基金

CDS&E-MSS: Sparsely Activated Bayesian Neural Networks from Deep Gaussian Processes
CDS
  • 批准号:
    2312173
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
  • 批准号:
    2343727
  • 财政年份:
    2024
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
  • 批准号:
    2343728
  • 财政年份:
    2024
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
  • 批准号:
    2222097
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
  • 批准号:
    2303568
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
  • 批准号:
    2334551
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning for Uncertainty in Coupled Water-Power Distribution Networks
合作研究:水电耦合配电网的不确定性规划
  • 批准号:
    2222096
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
  • 批准号:
    2303566
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
  • 批准号:
    2303567
  • 财政年份:
    2023
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing Grant
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
  • 批准号:
    2210811
  • 财政年份:
    2022
  • 资助金额:
    $ 14.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了