CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas

CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用

基本信息

  • 批准号:
    2210811
  • 负责人:
  • 金额:
    $ 33.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This Critical Aspects of Sustainability - Climate (CAS-Climate) project develops an accurate and fast statistical representation (also known as emulation) of large-scale flooding events as an alternate to running complex physical models in every instance. This is achieved by training the statistical formulation on representative flood simulations but adding flexibility to infer results for situations that are not in the training set. Large floods are expected to occur more frequently due to climate change and so motivate increased attention for robust, efficient, and real-time flood modeling. For most river engineering problems, including flood mitigation, there is a need for quantification of water depth and surface elevation under different scenarios of rainfall and storm surges. While many hydraulic models (e.g., the TELEMAC model) can represent these features, large-scale hydraulic simulations of flooding using high-resolution topographic and infrastructure data, are computationally expensive to complete. Thus, despite these modeling resources, simulating possible flood scenarios routinely or in a rapid manner is limited. A novel aspect of this work is to focus on statistical distributions for extreme events, which are appropriate for flooding, rather than average quantities that are less useful for assessing risks and hazards. Also, the statistical basis of this approach lends itself to measures of uncertainty in the predictions and so support decision making and other practical uses.There is little existing methodology to emulate computer models built on spatial extreme distributions to represent flooding in a complex domain and an important feature of this work is matching the flooding response with the appropriate statistical processes. This is in contrast with a machine learning, purely data-driven approach where extreme events may not be as well represented. The modeling framework is transformative including: a Markov random field formulation using generalized extreme value distributions for site-specific conditional distributions, selecting neighborhood size using a penalized likelihood method for spatial extremes, a theoretical investigation into the validity and large sample properties of emulators, and developing computational algorithms to handle very large data volumes. This work will be validated through proof-of-concept studies with TELEMAC model simulations, forced by realistic patterns of extreme rainfall events and storm surges and located in an urban area of the US. Open-source tools will be generated based on the results from this project and shared with the engineering communities, especially civil infrastructure community that frequently faces challenges in coping with spatially-dependent data and uncertainties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可持续气候的关键方面(CAS-气候)项目开发了大规模洪灾事件的准确和快速的统计表示(也称为仿真),作为在每种情况下运行复杂物理模型的替代方案。这是通过训练典型洪水模拟的统计公式来实现的,但增加了灵活性,以推断不在训练集中的情况的结果。由于气候变化,预计大洪水将更频繁地发生,因此促使人们更加关注稳健、高效和实时的洪水建模。对于大多数河流工程问题,包括缓解洪水,需要在不同的降雨和风暴潮情况下量化水深和水面高程。虽然许多水力模型(如TELEMAC模型)可以表示这些特征,但使用高分辨率地形和基础设施数据进行大规模的洪水水力模拟计算成本很高。因此,尽管有这些建模资源,但常规地或快速地模拟可能的洪水情景是有限的。这项工作的一个新方面是专注于极端事件的统计分布,这些统计分布适合于洪水,而不是对评估风险和危害不太有用的平均数量。此外,该方法的统计学基础有助于测量预测中的不确定性,从而支持决策和其他实际用途。现有的方法很少模拟建立在空间极端分布上的计算机模型来表示复杂领域中的洪水,这项工作的一个重要特征是将洪水响应与适当的统计过程相匹配。这与机器学习、纯数据驱动的方法形成了鲜明对比,在这种方法中,极端事件可能不会被很好地表示出来。建模框架具有变革性,包括:使用针对特定地点的条件分布的广义极值分布的马尔可夫随机场公式,使用空间极值的惩罚似然方法选择邻域大小,对仿真器的有效性和大样本属性进行理论研究,以及开发处理超大数据量的计算算法。这项工作将通过TELEMAC模型模拟的概念验证研究来验证,该模型模拟了极端降雨事件和风暴潮的现实模式,并位于美国的一个城市地区。开源工具将基于该项目的结果生成,并与工程社区共享,特别是在处理空间相关数据和不确定性方面经常面临挑战的民用基础设施社区。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Soumendra Lahiri其他文献

Quadratic Prediction of Time Series via Auto-Cumulants

Soumendra Lahiri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Soumendra Lahiri', 18)}}的其他基金

EAGER: ADAPT: Time-Domain Study of the Dynamics of Relativistic Jets
EAGER:ADAPT:相对论喷流动力学的时域研究
  • 批准号:
    2235457
  • 财政年份:
    2022
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Standard Grant
Development of a General Framework for Nonlinear Prediction Using Auto-Cumulants: Theory, Methodology, and Computation
使用自累积量开发非线性预测的通用框架:理论、方法和计算
  • 批准号:
    2131233
  • 财政年份:
    2021
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Continuing Grant
Higher Order Asymptotics for Some Nonstandard Problems in Time Series and in High Dimensions
一些时间序列和高维非标准问题的高阶渐近
  • 批准号:
    2006475
  • 财政年份:
    2019
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Continuing Grant
Development of a General Framework for Nonlinear Prediction Using Auto-Cumulants: Theory, Methodology, and Computation
使用自累积量开发非线性预测的通用框架:理论、方法和计算
  • 批准号:
    1811998
  • 财政年份:
    2018
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Continuing Grant
Higher Order Asymptotics for Some Nonstandard Problems in Time Series and in High Dimensions
一些时间序列和高维非标准问题的高阶渐近
  • 批准号:
    1613192
  • 财政年份:
    2016
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Continuing Grant
Long range dependence and resampling methodology for spatial data
空间数据的长程依赖性和重采样方法
  • 批准号:
    1329240
  • 财政年份:
    2013
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Continuing Grant
Asymptotic Theory and Resampling Methods for High Dimensional Data
高维数据的渐近理论和重采样方法
  • 批准号:
    1310068
  • 财政年份:
    2013
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Continuing Grant
Conference on resampling methods and high dimensional data
重采样方法和高维数据会议
  • 批准号:
    1016239
  • 财政年份:
    2010
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Standard Grant
Long range dependence and resampling methodology for spatial data
空间数据的长程依赖性和重采样方法
  • 批准号:
    1007703
  • 财政年份:
    2010
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Continuing Grant
Resampling methods for temporal and spatial processes and their higher order accuracy
时空过程的重采样方法及其高阶精度
  • 批准号:
    0707139
  • 财政年份:
    2007
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243099
  • 财政年份:
    2023
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Reservoir dead pool in the western United States: probability and consequences of a novel extreme event
合作研究:CAS-气候:美国西部水库死池:新型极端事件的概率和后果
  • 批准号:
    2241892
  • 财政年份:
    2023
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308679
  • 财政年份:
    2023
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243100
  • 财政年份:
    2023
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Reservoir dead pool in the western United States: probability and consequences of a novel extreme event
合作研究:CAS-气候:美国西部水库死池:新型极端事件的概率和后果
  • 批准号:
    2241893
  • 财政年份:
    2023
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Structure, Dynamics, and Reaction Mechanism of Supported Single Atom for Photocatalytic CO2 Reduction
合作研究:CAS-气候:光催化CO2还原的负载单原子的结构、动力学和反应机制
  • 批准号:
    2321203
  • 财政年份:
    2023
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS - Climate: Improving Nonstationary Intensity-Duration-Frequency Analysis of Extreme Precipitation by Advancing Knowledge on the Generating Mechanisms
合作研究:CAS - 气候:通过增进对生成机制的认识来改进极端降水的非平稳强度-持续时间-频率分析
  • 批准号:
    2221803
  • 财政年份:
    2022
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Nonstationarity of Compound Coastal Floods in the Anthropocene
合作研究:CAS-气候:人类世复合沿海洪水的非平稳性
  • 批准号:
    2223894
  • 财政年份:
    2022
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: The Hydrologic Connection between Permafrost-Plateaus and Thaw-Bogs: Impact on Methane Emissions
合作研究:CAS-气候:永久冻土高原和解冻沼泽之间的水文联系:对甲烷排放的影响
  • 批准号:
    2143928
  • 财政年份:
    2022
  • 资助金额:
    $ 33.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了