Using an Insulator-Metal Transition to Overcome the Fundamental Limits of Non-Volatile Memory Based on Ferroelectric Field Effect Transistors

利用绝缘体-金属转变克服基于铁电场效应晶体管的非易失性存储器的基本限制

基本信息

  • 批准号:
    1914730
  • 负责人:
  • 金额:
    $ 33.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Nontechnical:The era of Big Data is creating enormous challenges to computing systems and networks. As the computing infrastructure evolves to meet these challenges, memory technology plays an increasingly important role. Over one hundred Zeta Bytes of data is expected to be generated annually by the year 2025. Future generations of computers will therefore need high performance memory that is fast, energy efficient, reliable, and compact. While existing technologies have some of the desired properties, they crucially lack others. For example, ferroelectric field effect transistors (FETs) based on hafnium oxide, a recently discovered material, exhibit very promising properties. They are persistent, retaining information even when turned off, have nanosecond switching speeds, and a small footprint. However, practical realization of this technology is impeded by fundamental issues which compromise reliability and constrain the operation of devices at low voltages. The proposed research aims at addressing this challenge by integrating a new functional material into ferroelectric FETs. Vanadium dioxide exhibits an insulator-to-metal phase transition, allowing it to be switched back and forth between an insulating and conductive states. This property will used to overcome the fundamental barriers associated with existing materials and enable a memory technology that significantly exceeds the performance of the current state-of-the-art. The project provides a natural platform for participating students to be involved in cross-disciplinary research at the intersection of electrical engineering and materials science. Outreach efforts will expose undergraduates and high school students to modern electronics, and broaden their experience and understanding of the opportunities in the area.Technical:This research project aims to overcome the fundamental design trade off involved in writing to, and reading from doped hafnium oxide ferroelectric field effect transistor-based non-volatile memory by replacing the conventional silicon channel of the transistor with an insulator-metal phase transition oxide, VO2. The ferroelectric state dependent abrupt resistance switching across the phase transition in VO2 that will be engineered in this device, will help de-convolute the read and write constraints, and enable the memory cell to be written at low voltages without adversely affecting the read margin, as well as also improve the reliability. A fundamental aspect of this research will focus on stabilizing the ferroelectric phase of doped hafnium oxide on the VO2 under a constrained thermal budget. Furthermore, through a materials-device co-design approach, the project will seek to experimentally demonstrate a ferroelectric transistor-based memory that can operate at a low write voltage and energy, provide large read distinguishability, and exhibit large endurance and reliability. Physics based models and simulations that capture the operation of the device as well as account for its compatibility with array level operation will be developed to support and guide the experimental effort. The results of the proposed research stand to have immense implications towards realizing a universal memory to support and accelerate the data revolution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:大数据时代正在给计算系统和网络带来巨大挑战。随着计算基础设施的发展以应对这些挑战,存储器技术发挥着越来越重要的作用。预计到2025年,每年将产生超过100个Zeta的数据。因此,未来几代计算机将需要快速、节能、可靠和紧凑的高性能存储器。虽然现有技术具有一些理想的特性,但它们严重缺乏其他特性。例如,基于氧化铪(最近发现的材料)的铁电场效应晶体管(FET)表现出非常有前途的特性。它们具有持久性,即使关闭也能保留信息,具有纳秒级的切换速度和较小的占地面积。然而,这种技术的实际实现受到损害可靠性和限制设备在低电压下操作的基本问题的阻碍。拟议的研究旨在通过将新的功能材料集成到铁电FET中来应对这一挑战。二氧化钒表现出绝缘体到金属的相变,使其能够在绝缘和导电状态之间来回切换。该特性将用于克服与现有材料相关的基本障碍,并使存储器技术的性能大大超过当前最先进的技术。该项目为参与学生提供了一个自然的平台,使他们能够参与电气工程和材料科学交叉领域的跨学科研究。拓展工作将使本科生和高中生接触到现代电子学,并拓宽他们的经验和对该领域机会的理解。技术:本研究项目旨在克服基本的设计权衡涉及写入,并阅读从掺杂氧化铪铁电场效应晶体管为基础的非易失性存储器,取代传统的硅沟道的晶体管与绝缘体-金属相变氧化物,VO 2。将在该器件中设计的跨VO 2中的相变的铁电状态相关的突然电阻切换将帮助解卷积读取和写入约束,并且使得能够在低电压下写入存储器单元而不会不利地影响读取裕度,以及还提高可靠性。这项研究的一个基本方面将集中在稳定的铁电相的掺杂氧化铪的VO 2在一个受约束的热预算。此外,通过材料-器件协同设计方法,该项目将寻求实验证明基于铁电晶体的存储器可以在低写入电压和能量下工作,提供大的读取可重复性,并表现出大的耐久性和可靠性。将开发基于物理的模型和模拟,捕捉设备的操作,以及考虑其与阵列级操作的兼容性,以支持和指导实验工作。这项研究的结果将对实现通用存储器以支持和加速数据革命产生巨大影响。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ferroelectric-based Accelerators for Computationally Hard Problems
用于解决计算难题的铁电加速器
Ultra-Compact, Scalable, Energy-Efficient $VO_{2}$ Insulator-Metal-Transition Oxide Based Spiking Neurons for Liquid State Machines
用于液体状态机的超紧凑、可扩展、节能的 $VO_{2}$ 基于绝缘体金属过渡氧化物的尖峰神经元
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nikhil Shukla其他文献

Role of female sex steroids in regulating cholesteryl ester transfer protein in transgenic mice.
雌性类固醇在调节转基因小鼠胆固醇酯转移蛋白中的作用。
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Vadlamudi;Paul S. MacLean;Thomas D. Green;Nikhil Shukla;John F. Bradfield;Stephen J. Vore;Hisham A. Barakat
  • 通讯作者:
    Hisham A. Barakat
A Note on Analyzing the Stability of Oscillator Ising Machines
振荡机稳定性分析的一个注记
  • DOI:
    10.48550/arxiv.2310.09322
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. K. Bashar;Z. Lin;Nikhil Shukla
  • 通讯作者:
    Nikhil Shukla
Designing a K-state P-bit Engine
设计 K 状态 P 位引擎
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. K. Bashar;Abir Hasan;Nikhil Shukla
  • 通讯作者:
    Nikhil Shukla
An FPGA-based Max-K-Cut Accelerator Exploiting Oscillator Synchronization Model
基于 FPGA 的利用振荡器同步模型的 Max-K-Cut 加速器
Pro12Ala Polymorphism in PPARγ Is Associated With Lower Risk of Mechanical Ventilation After Coronary Artery Bypass Graft Surgery (CABG
  • DOI:
    10.1378/chest.124.4_meetingabstracts.103s-b
  • 发表时间:
    2003-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sachin Yende;Richard G. Wunderink;Michael W. Quasney;Theodore J. Sandiford;Nikhil Shukla;Qing Zhang;Charles R. Yates
  • 通讯作者:
    Charles R. Yates

Nikhil Shukla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nikhil Shukla', 18)}}的其他基金

Collaborative Research: FuSe: A Reconfigurable Ferrolectronics Platform for Collective Computing (FALCON)
合作研究:FuSe:用于集体计算的可重构铁电子平台(FALCON)
  • 批准号:
    2328961
  • 财政年份:
    2023
  • 资助金额:
    $ 33.61万
  • 项目类别:
    Continuing Grant
ASCENT: Ferroelectric-based Compute-in-Memory Dynamical Engine (Ferro-CoDE) to Solve Hard Combinatorial Optimization
ASCENT:基于铁电的内存计算动态引擎 (Ferro-CoDE) 解决硬组合优化问题
  • 批准号:
    2132918
  • 财政年份:
    2021
  • 资助金额:
    $ 33.61万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: Enhancing plasmonic mode coupling in metal insulator metal structures
EAGER:增强金属绝缘体金属结构中的等离子体模式耦合
  • 批准号:
    2334968
  • 财政年份:
    2023
  • 资助金额:
    $ 33.61万
  • 项目类别:
    Standard Grant
Superconductor-(Metal)-Insulator Transitions: Understanding the Emergence of Metallic States, A Continuation Proposal
超导体-(金属)-绝缘体转变:了解金属态的出现,延续提案
  • 批准号:
    2307132
  • 财政年份:
    2023
  • 资助金额:
    $ 33.61万
  • 项目类别:
    Continuing Grant
Study of electronic dynamics on Metal-Insulator phase boundary of lambda-BETS salts
lambda-BETS盐金属-绝缘体相界电子动力学研究
  • 批准号:
    23K04685
  • 财政年份:
    2023
  • 资助金额:
    $ 33.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: Plasmonic Sensing in Liquid with Metal-Insulator-Metal Nanosensors Embedded in Soft Matrices
EAGER:使用嵌入软基体中的金属-绝缘体-金属纳米传感器在液体中进行等离子体传感
  • 批准号:
    2332818
  • 财政年份:
    2023
  • 资助金额:
    $ 33.61万
  • 项目类别:
    Standard Grant
Critical phenomena of metal-insulator transition in disordered impurity systems: Effects of spin and compensation
无序杂质系统中金属-绝缘体转变的关键现象:自旋和补偿的影响
  • 批准号:
    22K03449
  • 财政年份:
    2022
  • 资助金额:
    $ 33.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Superconducting and Metal-Insulator Transitions in Quasi-Two-Dimensional Strongly Correlated Materials
准二维强关联材料中的超导和金属-绝缘体转变
  • 批准号:
    2104193
  • 财政年份:
    2021
  • 资助金额:
    $ 33.61万
  • 项目类别:
    Continuing Grant
Realizing of non-volatile memory with large capacity and low power consumption by metal-insulator-semiconductor junction composed by phase change material and oxide
利用相变材料和氧化物组成的金属-绝缘体-半导体结实现大容量、低功耗的非易失性存储器
  • 批准号:
    21K20509
  • 财政年份:
    2021
  • 资助金额:
    $ 33.61万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
CAREER: Electrical and Thermoelectric Transport Beyond the Metal/Insulator Paradigm
职业:超越金属/绝缘体范式的电和热电传输
  • 批准号:
    2045742
  • 财政年份:
    2021
  • 资助金额:
    $ 33.61万
  • 项目类别:
    Continuing Grant
Smart regulation of thermal infrared radiation with meta-structured metal-insulator transition
通过元结构金属-绝缘体转变智能调节热红外辐射
  • 批准号:
    1953803
  • 财政年份:
    2020
  • 资助金额:
    $ 33.61万
  • 项目类别:
    Standard Grant
Investigation of metal-insulator transition and negative thermal expansion in layers ruthenates.
层状钌酸盐中金属-绝缘体转变和负热膨胀的研究。
  • 批准号:
    19F19057
  • 财政年份:
    2019
  • 资助金额:
    $ 33.61万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了