Collaborative Research: An Interdisciplinary Approach to Prepare Undergraduates for Data Science Using Real-World Data from High Frequency Monitoring Systems
协作研究:利用高频监测系统的真实数据为本科生准备数据科学的跨学科方法
基本信息
- 批准号:1915268
- 负责人:
- 金额:$ 90.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With support from the NSF Improving Undergraduate STEM Education Program: Education and Human Resources (IUSE: EHR), this project aims to serve the national interest by improving undergraduate understanding of data science. It will accomplish this goal by incorporating data science concepts and skill development in undergraduate courses in biology, computer science, engineering, and environmental science. Through a collaboration between Virginia Tech, Vanderbilt University, and North Carolina Agricultural and Technical State University, the project will develop interdisciplinary learning modules based on high frequency, real-time data from water and traffic monitoring systems. The project intends to develop a common approach for introducing data science concepts in STEM disciplinary courses. By embedding data science into a variety of undergraduate STEM courses and creating a partnership that includes a Historically Black College/University, this project has the potential to broaden participation in data science, including participation of students from populations that are underrepresented in data science and/or STEM fields. This project will develop data science learning modules to implement in eight existing STEM courses at the collaborating institutions. The learning modules will be motivated by real-world problems and high-frequency datasets, including a water monitoring dataset from Virginia Tech, and transportation and building monitoring datasets from Vanderbilt. The learning module topics will include: Interdisciplinary Learning, Data Analytics, and Industry Partnerships. These topics will facilitate incorporation of real-world data sets to enhance the student learning experience and they are broad enough that they can incorporate other data sets in the future. The project aims to develop and implement an interdisciplinary collaborative approach to support undergraduate students in developing data science expertise through their disciplinary course work. Such expertise will better prepare students to enter the STEM workforce, especially those STEM professions that focus on smart and connected computing. The project will investigate how and in what ways the modules support student learning of data science. The project will also investigate how implementation of the modules varies across the collaborating institutions. It is expected that the project will define key considerations for integrating data science concepts into STEM courses and will host workshops to introduce faculty to these considerations and strategies so they can incorporate the learning modules into the STEM courses that they teach. The project collaborators will provide the framework for generalizing and transferring the learning modules to other STEM education communities, thus broadening the scope and the impact of this project beyond the three collaborating institutions. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在NSF改善本科生STEM教育计划:教育和人力资源(IUSE:EHR)的支持下,该项目旨在通过提高本科生对数据科学的理解来服务于国家利益。 它将通过将数据科学概念和技能发展纳入生物学,计算机科学,工程和环境科学的本科课程来实现这一目标。通过弗吉尼亚理工大学、范德比尔特大学和北卡罗来纳州农业技术州立大学之间的合作,该项目将根据水和交通监测系统的高频实时数据开发跨学科学习模块。该项目旨在开发一种通用方法,在STEM学科课程中引入数据科学概念。通过将数据科学嵌入到各种本科STEM课程中,并建立包括历史上黑人学院/大学在内的合作伙伴关系,该项目有可能扩大对数据科学的参与,包括来自数据科学和/或STEM领域代表性不足的人群的学生的参与。 该项目将开发数据科学学习模块,以在合作机构的八个现有STEM课程中实施。这些学习模块将受到现实世界问题和高频数据集的激励,包括弗吉尼亚理工大学的水监测数据集,以及范德比尔特的交通和建筑监测数据集。学习模块的主题将包括:跨学科学习,数据分析和行业合作伙伴关系。这些主题将有助于纳入真实世界的数据集,以增强学生的学习体验,它们足够广泛,可以在未来纳入其他数据集。该项目旨在开发和实施一种跨学科的协作方法,以支持本科生通过他们的学科课程工作发展数据科学专业知识。这些专业知识将更好地为学生进入STEM劳动力市场做好准备,特别是那些专注于智能和互联计算的STEM专业。该项目将研究这些模块如何以及以何种方式支持学生学习数据科学。该项目还将调查各协作机构在实施这些模块方面的差异。 预计该项目将定义将数据科学概念整合到STEM课程中的关键考虑因素,并将举办研讨会,向教师介绍这些考虑因素和策略,以便他们能够将学习模块纳入他们教授的STEM课程。 项目合作者将提供一个框架,将学习模块推广和转移到其他STEM教育社区,从而扩大该项目的范围和影响,使其超出三个合作机构。NSF IUSE:EHR计划支持研究和开发项目,以提高所有学生STEM教育的有效性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A modular approach for integrating data science concepts into multiple undergraduate STEM+C courses
将数据科学概念集成到多个本科 STEM C 课程中的模块化方法
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Naseri, M. Y.;C. Snyder;B. Mcloughlin, S. Bhandari;N.j Aryal;G. Biswas;A. Dubey;E. Henrick;E. Hotchkiss;M. K. Jha;S. X. Jiang
- 通讯作者:S. X. Jiang
Understanding Data Science Instruction in Multiple STEM Disciplines
了解多个 STEM 学科中的数据科学教学
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Snyder, C.
- 通讯作者:Snyder, C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vinod Lohani其他文献
Integration and Evaluation of Spiral Theory based Cybersecurity Modules into core Computer Science and Engineering Courses
基于螺旋理论的网络安全模块在计算机科学与工程核心课程中的集成和评估
- DOI:
10.1145/3328778.3366798 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Debarati Basu;Harinni K. Kumar;Vinod Lohani;N. D. Barnette;Godmar Back;David McPherson;C. Ribbens;P. Plassmann - 通讯作者:
P. Plassmann
Vinod Lohani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vinod Lohani', 18)}}的其他基金
IPA Vinod Lohani: Virginia Polytechnic Institute and State University (Virginia Tech)
IPA Vinod Lohani:弗吉尼亚理工学院和州立大学(Virginia Tech)
- 批准号:
2013674 - 财政年份:2020
- 资助金额:
$ 90.02万 - 项目类别:
Intergovernmental Personnel Award
I-Corps L: A Cyberlearning System for Environmental Monitoring Education
I-Corps L:环境监测教育网络学习系统
- 批准号:
1644465 - 财政年份:2016
- 资助金额:
$ 90.02万 - 项目类别:
Standard Grant
REU Site: Research Opportunities in Interdisciplinary Water Sciences and Engineering
REU 网站:跨学科水科学与工程的研究机会
- 批准号:
1359051 - 财政年份:2014
- 资助金额:
$ 90.02万 - 项目类别:
Standard Grant
Integration of a Remote Water Sustainability Lab to Enhance Undergraduate Engineering Education
整合远程水可持续实验室以加强本科工程教育
- 批准号:
1140467 - 财政年份:2012
- 资助金额:
$ 90.02万 - 项目类别:
Standard Grant
REU Site: Research Opportunities in Interdisciplinary Water Sciences and Engineering
REU 网站:跨学科水科学与工程的研究机会
- 批准号:
1062860 - 财政年份:2011
- 资助金额:
$ 90.02万 - 项目类别:
Continuing Grant
Reformulating General Engineering and Biological Systems Engineering Programs at Virginia Tech
重新制定弗吉尼亚理工大学的通用工程和生物系统工程课程
- 批准号:
0431779 - 财政年份:2004
- 资助金额:
$ 90.02万 - 项目类别:
Standard Grant
Bridges for Engineering Education: Virginia Tech (BEEVT)
工程教育桥梁:弗吉尼亚理工大学 (BEEVT)
- 批准号:
0342000 - 财政年份:2003
- 资助金额:
$ 90.02万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Conference/Collaborative Research: Interdisciplinary Workshop on Mechanical Intelligence; Alexandria, Virginia; late 2023/early 2024
会议/合作研究:机械智能跨学科研讨会;
- 批准号:
2335476 - 财政年份:2023
- 资助金额:
$ 90.02万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: The Socio-Ecological Role of Greenways in Urban Systems - An Interdisciplinary Approach
合作研究:REU 站点:绿道在城市系统中的社会生态作用 - 跨学科方法
- 批准号:
2150093 - 财政年份:2023
- 资助金额:
$ 90.02万 - 项目类别:
Standard Grant
Collaborative Research: SCIPE: Interdisciplinary Research Support Community for Artificial Intelligence and Data Sciences
合作研究:SCIPE:人工智能和数据科学跨学科研究支持社区
- 批准号:
2320952 - 财政年份:2023
- 资助金额:
$ 90.02万 - 项目类别:
Standard Grant
Collaborative Research: Revealing the changing trophic niches of large herbivorous fish on modern coral reefs using an interdisciplinary approach
合作研究:利用跨学科方法揭示现代珊瑚礁上大型草食性鱼类营养生态位的变化
- 批准号:
2232883 - 财政年份:2023
- 资助金额:
$ 90.02万 - 项目类别:
Standard Grant
Collaborative Research: Revealing the changing trophic niches of large herbivorous fish on modern coral reefs using an interdisciplinary approach
合作研究:利用跨学科方法揭示现代珊瑚礁上大型草食性鱼类营养生态位的变化
- 批准号:
2232882 - 财政年份:2023
- 资助金额:
$ 90.02万 - 项目类别:
Standard Grant
Conference/Collaborative Research: Interdisciplinary Workshop on Mechanical Intelligence; Alexandria, Virginia; late 2023/early 2024
会议/合作研究:机械智能跨学科研讨会;
- 批准号:
2335477 - 财政年份:2023
- 资助金额:
$ 90.02万 - 项目类别:
Standard Grant
Interdisciplinary Clinical Advances and Research Excellence in TMDs (ICARE 4 TMDs) Collaborative
TMD 跨学科临床进展和卓越研究 (ICARE 4 TMD) 协作
- 批准号:
10829180 - 财政年份:2023
- 资助金额:
$ 90.02万 - 项目类别:
IRES Track I: Collaborative Research: Interdisciplinary Research in Korea on Applied Smart Systems (IRiKA) for Undergraduate Students
IRES Track I:合作研究:韩国本科生应用智能系统跨学科研究 (IRiKA)
- 批准号:
2311700 - 财政年份:2023
- 资助金额:
$ 90.02万 - 项目类别:
Standard Grant
Collaborative Research: Revealing the changing trophic niches of large herbivorous fish on modern coral reefs using an interdisciplinary approach
合作研究:利用跨学科方法揭示现代珊瑚礁上大型草食性鱼类营养生态位的变化
- 批准号:
2232881 - 财政年份:2023
- 资助金额:
$ 90.02万 - 项目类别:
Standard Grant
Collaborative Research: SCIPE: Interdisciplinary Research Support Community for Artificial Intelligence and Data Sciences
合作研究:SCIPE:人工智能和数据科学跨学科研究支持社区
- 批准号:
2320953 - 财政年份:2023
- 资助金额:
$ 90.02万 - 项目类别:
Standard Grant