Investigating How Active Fluctuations Drive Immune Receptor Dynamics and Signaling
研究主动波动如何驱动免疫受体动态和信号传导
基本信息
- 批准号:1915534
- 负责人:
- 金额:$ 45.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Forces are important in driving many cellular functions from cell motion, cell division and cell growth to the proper functioning of the immune response. Cell generated forces have been implicated in playing a role both at the molecular scale for changing the conformation of key signaling molecules to initiate signal transduction pathways to the cellular and tissue scale for large scale morphological deformations and collective motion. In particular, it is becoming increasingly clear that forces in cells are not static, rather they show strong fluctuations driven by the collective dynamics of actin and microtubules cytoskeleton and molecular motors which are highly non-equilibrium in nature. Most experimental and theoretical work has focused on demonstrating the existence of active fluctuations in living systems and characterizing the physical implications. However, little is known about how active fluctuations regulate cell function in a physiological context. In this project the PI will determine the role of active cytoskeletal and force fluctuations in the context of the immune response for B cell receptor and T cell receptor mediated signaling. The PI's results will have broad implications in the field of force mediated molecular transduction processes in biology such as during cell adhesion, migration and development. The interdisciplinary nature of the proposed work will enhance our understanding of the fundamental physics underlying the function of living systems and have significant impact both in the fields of active matter and cell biology. The PI will work to integrate key aspects of the research with teaching and outreach activities. The PI will offer an undergraduate course on critical thinking and research practice using hands on research modules on relevant themes such as cellular force generation. The PI will introduce concepts from soft matter and cell biology into a course for education majors, to instill in them an appreciation for physics and its connection to biology, which they can take to elementary school classrooms: a potentially powerful way to inspire children to STEM careers. The PI will give talks focused on the physical aspects of cells and soft matter in local elementary schools as part of Science Day programs. The PI will actively recruit a diverse group of undergraduate students and participate in programs for attracting high school students to biological physics research as part of the established Summer Girls program and a newly proposed Biophysics Day on campus. The PI also proposes to enhance outreach by working on the intersection of Science and Art with an exhibition of science-inspired photographs by scientists and paintings by artists to disseminate these ideas to the general public.This project is a first step in elucidating the biological relevance of non-equilibrium fluctuations for functional aspects of living systems. In this project the PI will use state of the art imaging and computational analyses to explore the role of force fluctuations in the immune response using two examples. In Objective 1, the PI will examine receptor clustering in B cells, which is an essential first step in antigen gathering. A current model posits that the actin cytoskeleton acts as diffusive barriers to BCR movement. Antigen binding and signaling leads to dissolution of these barriers and diffusion-limited growth of the clusters. However, the PI's preliminary studies suggest that actin dynamics may have an active role in this process. Theoretical models of active membrane-actin interactions have been shown to be able to form non-equilibrium structures that can support the formation of macromolecular assemblies of receptors. The PI will use single molecule imaging, analysis and modeling to test whether BCR clustering requires active stirring by actin dynamics. In Objective 2, the PI will study how force fluctuations originating from cytoskeletal and motor dynamics inside cells are transmitted to the extracellular environment and drive signal transduction. Experimental studies and theoretical work have shown that the non-equilibrium cytoskeletal fluctuations are clearly athermal in character with a Lorentzian power spectrum. On the other hand, most studies of TCR signaling consider the dynamics of TCR-antigen bonds under static loads. The PI hypothesizes that force fluctuations arising from stochastic motor activity and actin dynamics facilitate antigen discrimination and amplify signaling and will use traction force microscopy, optogenetics and biophysical studies to map the spatial structure of force fluctuations and correlate it with the kinetics of signaling, enabling her to elucidate the role of these non- equilibrium fluctuations for immune cell activation. More generally the work will have implications in understanding the fundamental principles underlying how active living systems function.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
力在驱动从细胞运动、细胞分裂和细胞生长到免疫应答的正常功能的许多细胞功能中是重要的。细胞产生的力在分子尺度上发挥作用,改变关键信号分子的构象,启动细胞和组织尺度的信号转导途径,实现大规模形态变形和集体运动。特别是,越来越清楚的是,细胞中的力不是静态的,而是由肌动蛋白和微管细胞骨架和分子马达的集体动力学驱动的强烈波动,这些动力学在本质上是高度非平衡的。大多数实验和理论工作都集中在证明生命系统中存在活跃的波动,并描述其物理意义。然而,很少有人知道如何积极波动调节细胞功能在生理环境中。在本项目中,PI将确定B细胞受体和T细胞受体介导的信号传导的免疫应答背景下活性细胞骨架和力波动的作用。PI的结果将在生物学中的力介导的分子转导过程领域具有广泛的意义,例如在细胞粘附,迁移和发育期间。拟议工作的跨学科性质将增强我们对生命系统功能基础物理学的理解,并在活性物质和细胞生物学领域产生重大影响。PI将努力将研究的关键方面与教学和推广活动相结合。PI将提供批判性思维和研究实践的本科课程,使用细胞力生成等相关主题的研究模块。PI将把软物质和细胞生物学的概念引入教育专业的课程中,向他们灌输对物理及其与生物学的联系的欣赏,他们可以将其带到小学课堂:这是激励孩子们从事STEM职业的潜在有力方式。作为科学日计划的一部分,PI将在当地小学进行关于细胞和软物质物理方面的讲座。PI将积极招募不同的本科生群体,并参与吸引高中生参与生物物理研究的计划,作为既定暑期女生计划和新提议的校园生物物理日的一部分。PI还建议通过科学与艺术的交叉来加强宣传,通过科学家的科学灵感照片和艺术家的绘画展览向公众传播这些想法。该项目是阐明非平衡波动对生命系统功能方面的生物学意义的第一步。在这个项目中,PI将使用最先进的成像和计算分析来探索力波动在免疫反应中的作用,使用两个例子。在目标1中,PI将检查B细胞中的受体聚集,这是抗原聚集的重要第一步。目前的模型假定肌动蛋白细胞骨架作为扩散屏障BCR运动。抗原结合和信号传导导致这些屏障的溶解和簇的扩散限制性生长。然而,PI的初步研究表明,肌动蛋白动力学可能在这一过程中发挥积极作用。主动膜-肌动蛋白相互作用的理论模型已被证明能够形成非平衡结构,该非平衡结构可以支持受体的大分子组装体的形成。PI将使用单分子成像,分析和建模来测试BCR聚类是否需要肌动蛋白动力学的主动搅拌。在目标2中,PI将研究源自细胞内细胞骨架和运动动力学的力波动如何传递到细胞外环境并驱动信号转导。实验研究和理论工作表明,非平衡的细胞骨架波动明显是非热的性质与洛伦兹功率谱。另一方面,TCR信号传导的大多数研究考虑静态负荷下TCR-抗原键的动力学。PI假设随机运动活动和肌动蛋白动力学引起的力波动促进抗原识别并放大信号传导,并将使用牵引力显微镜、光遗传学和生物物理学研究来绘制力波动的空间结构并将其与信号传导动力学相关联,使她能够阐明这些非平衡波动对免疫细胞活化的作用。更广泛地说,这项工作将对理解活跃的生命系统如何运作的基本原则产生影响。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Power-law behavior of transcription factor dynamics at the single-molecule level implies a continuum affinity model
- DOI:10.1093/nar/gkab072
- 发表时间:2021-02-17
- 期刊:
- 影响因子:14.9
- 作者:Garcia, David A.;Fettweis, Gregory;Hager, Gordon L.
- 通讯作者:Hager, Gordon L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arpita Upadhyaya其他文献
Mechanical regulation of cytoskeletal dynamics and function in cytotoxic T lymphocytes
- DOI:
10.1016/j.bpj.2023.11.882 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Aashli Pathni;Vishavdeep Vashisht;Lei Li;Neha Narayan;Zhengguo Xiao;Arpita Upadhyaya - 通讯作者:
Arpita Upadhyaya
Structure and Mechanical Properties of Actin Networks Crosslinked with Mutually Interacting Crosslinkers
- DOI:
10.1016/j.bpj.2010.12.3428 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Brian Grooman;Ikoku Fujiwara;Carol Otey;Arpita Upadhyaya - 通讯作者:
Arpita Upadhyaya
Cytoskeletal Dynamics and Mechanosensing in Immune Cells
- DOI:
10.1016/j.bpj.2020.11.904 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Arpita Upadhyaya - 通讯作者:
Arpita Upadhyaya
Rapid Treadmilling and Myosin Motors Synergistically Induce Formation of Ring-Like Actomyosin Architectures and Cortexes
- DOI:
10.1016/j.bpj.2018.11.1371 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Qin Ni;Arpita Upadhyaya;Garegin A. Papoian - 通讯作者:
Garegin A. Papoian
Spreading Dynamics and Oscillatory Membrane Behavior of B Lymphocytes
- DOI:
10.1016/j.bpj.2010.12.1872 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Christina Ketchum;Chaohong Liu;Wenxia Song;Arpita Upadhyaya - 通讯作者:
Arpita Upadhyaya
Arpita Upadhyaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arpita Upadhyaya', 18)}}的其他基金
Collaborative Research: Using the Physics of Living Systems Student Research Network to Transmit Techniques and Train Talent
合作研究:利用生命系统物理学学生研究网络传播技术和培养人才
- 批准号:
2310742 - 财政年份:2023
- 资助金额:
$ 45.03万 - 项目类别:
Standard Grant
Transitions: Mechanical Regulation of Transcription Factor Dynamics, Chromatin Accessibility and Gene Expression
转变:转录因子动力学、染色质可及性和基因表达的机械调节
- 批准号:
2132922 - 财政年份:2022
- 资助金额:
$ 45.03万 - 项目类别:
Standard Grant
Collaborative Research: Formation of a High Flux Student Research Network (HF-SRN) as a Laboratory for Enhancing Interaction in the PoLS SRN
合作研究:建立高通量学生研究网络(HF-SRN)作为增强 PoLS SRN 互动的实验室
- 批准号:
1806903 - 财政年份:2018
- 资助金额:
$ 45.03万 - 项目类别:
Continuing Grant
Mechanisms of Immune Cell Response to Mechanical Load
免疫细胞对机械负荷的反应机制
- 批准号:
1563355 - 财政年份:2016
- 资助金额:
$ 45.03万 - 项目类别:
Standard Grant
Physics of Centrosome Reorientation during Signaling Activation in Immune Cells
免疫细胞信号激活过程中中心体重新定向的物理学
- 批准号:
1607645 - 财政年份:2016
- 资助金额:
$ 45.03万 - 项目类别:
Continuing Grant
Physical Aspects of Lymphocyte Activation
淋巴细胞激活的物理方面
- 批准号:
1206060 - 财政年份:2012
- 资助金额:
$ 45.03万 - 项目类别:
Continuing Grant
Collaborative Research: Regulation of Cellular Mechanics by Crosslinked Actin Networks - Role of Palladin and Alpha-actinin
合作研究:交联肌动蛋白网络调节细胞力学 - Palladin 和 α-肌动蛋白的作用
- 批准号:
1121710 - 财政年份:2011
- 资助金额:
$ 45.03万 - 项目类别:
Continuing Grant
相似海外基金
Active Social Vision: How the Brain Processes Visual Information During Natural Social Perception
主动社交视觉:大脑如何在自然社交感知过程中处理视觉信息
- 批准号:
10608251 - 财政年份:2023
- 资助金额:
$ 45.03万 - 项目类别:
Understanding how RIF1 and KAP1 enable the choice of the future active and inactive X chromosomes: the establishment of functional asymmetry.
了解 RIF1 和 KAP1 如何选择未来的活性和非活性 X 染色体:功能不对称的建立。
- 批准号:
BB/W015544/1 - 财政年份:2023
- 资助金额:
$ 45.03万 - 项目类别:
Research Grant
Towards Understanding How Active Observers Solve Visuospatial Tasks
理解主动观察者如何解决视觉空间任务
- 批准号:
DGDND-2022-04606 - 财政年份:2022
- 资助金额:
$ 45.03万 - 项目类别:
DND/NSERC Discovery Grant Supplement
A Comprehensive Endogenous Basement Membrane Toolkit to Elucidate how Basement Membranes Stretch on Mechanically Active Tissues and Decline during Aging
一个全面的内源性基底膜工具包,用于阐明基底膜如何在机械活动组织上伸展和衰老过程中的衰退
- 批准号:
10430646 - 财政年份:2022
- 资助金额:
$ 45.03万 - 项目类别:
How the two circadian oscillators determine the length of the active period
两个昼夜节律振荡器如何确定活跃期的长度
- 批准号:
22K06311 - 财政年份:2022
- 资助金额:
$ 45.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Comprehensive Endogenous Basement Membrane Toolkit to Elucidate how Basement Membranes Stretch on Mechanically Active Tissues and Decline during Aging
一个全面的内源性基底膜工具包,用于阐明基底膜如何在机械活动组织上伸展和衰老过程中的衰退
- 批准号:
10580610 - 财政年份:2022
- 资助金额:
$ 45.03万 - 项目类别:
Towards Understanding How Active Observers Solve Visuospatial Tasks
理解主动观察者如何解决视觉空间任务
- 批准号:
RGPIN-2022-04606 - 财政年份:2022
- 资助金额:
$ 45.03万 - 项目类别:
Discovery Grants Program - Individual
How does an arts organization transition into a more active and equitable climate constituent? BALTIC Centre for Contemporary Art as case study.
艺术组织如何转变为更积极、更公平的气候组成部分?
- 批准号:
2594404 - 财政年份:2021
- 资助金额:
$ 45.03万 - 项目类别:
Studentship
Investigate how to design cost-effective wearable intelligence techniques with dynamic active learning algorithms
研究如何利用动态主动学习算法设计经济高效的可穿戴智能技术
- 批准号:
2784470 - 财政年份:2021
- 资助金额:
$ 45.03万 - 项目类别:
Studentship
How the neuromuscular system of the pigeon (Columba livia) contributes to the control of active wing morphing
鸽子(Columba livia)的神经肌肉系统如何有助于控制主动翅膀变形
- 批准号:
519103-2018 - 财政年份:2020
- 资助金额:
$ 45.03万 - 项目类别:
Postgraduate Scholarships - Doctoral