EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Modeling Memory Illusion for Predicting Trust in Online Information
EAGER:SaTC:早期跨学科合作:建模记忆错觉以预测在线信息的信任
基本信息
- 批准号:1915801
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project integrates advances in data science and key findings from psychological research to improve the prediction of trust in information on social media by modeling the psychological phenomenon known as the memory illusion. The memory illusion refers to memory errors that people make to remember information as an outcome of interpreting and making inferences from their past experience. This project will use social media data to examine the memory illusion with online information, and to understand how it is associated with people's trust in information on social media. Better understanding on the extent and impact of the memory illusion phenomenon using big data will inform machine-learning approaches to better measure trust in information with an additional human information-processing perspective, benefiting society by providing reliable online information, and increasing people's overall trust in information on social media.This project pursues several research goals to advance the state-of-art of machine learning models to predict people's trust in information on social media. The first goal is to characterize the formation of associative inferences on Twitter information, and understand how it contributes to individuals' trust in tweets. To advance this goal, the research will use big data and data-driven machine learning models. Based on the insights learned from big data, the second goal is to establish the causal relations between identified associative inferences and people's trust of social media information with laboratory and online user studies. The last goal is to model associative inferences into machine learning algorithms to improve the prediction of user trust in online information. The project will advance the state-of-the-art with regard to our understanding on people's trust in social media information in particular and human memory illusion in general. Through interdisciplinary socio-technical collaboration, the project will advance machine-learning models considering human information processing to improve the prediction of people's trust in information on social media, and improve understanding of human behavior using a big data approach to reveal relations among psychological phenomena on a scale that has not been possible with the smaller data sets collected in the laboratory. The interdisciplinary research using data science and psychological research will address theory-based research questions regarding the relationships of information veracity, trust, and information context. Students will participate in all phases of the research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目整合了数据科学的进步和心理学研究的关键发现,通过对被称为记忆错觉的心理现象进行建模,来改善对社交媒体信息信任的预测。记忆错觉是指人们在记忆信息时所犯的错误,这些错误是从他们过去的经验中解释和推断的结果。该项目将使用社交媒体数据来检查在线信息的记忆错觉,并了解它如何与人们对社交媒体信息的信任度相关联。使用大数据更好地了解记忆错觉现象的程度和影响,将为机器学习方法提供信息,以更好地衡量对信息的信任,并从人类信息处理的角度出发,通过提供可靠的在线信息造福社会,并增加人们对社交媒体信息的整体信任度。该项目追求几个研究目标,以推进国家的,机器学习模型的艺术,以预测人们对社交媒体上信息的信任。第一个目标是描述Twitter信息的联想推理的形成,并了解它如何有助于个人对推文的信任。 为了推进这一目标,该研究将使用大数据和数据驱动的机器学习模型。基于从大数据中获得的见解,第二个目标是通过实验室和在线用户研究建立识别的关联推理与人们对社交媒体信息的信任之间的因果关系。最后一个目标是将关联推理建模到机器学习算法中,以提高在线信息中用户信任的预测。该项目将推进我们对人们对社交媒体信息的信任以及人类记忆错觉的理解。通过跨学科的社会技术合作,该项目将推进考虑人类信息处理的机器学习模型,以提高人们对社交媒体信息的信任度的预测,并使用大数据方法来提高对人类行为的理解,以揭示心理现象之间的关系,这是实验室收集的较小数据集无法实现的。利用数据科学和心理学研究的跨学科研究将解决有关信息真实性,信任和信息上下文之间关系的理论研究问题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Beyond cognitive ability: Susceptibility to fake news is also explained by associative inference
超越认知能力:对假新闻的敏感性也可以通过联想推理来解释
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Sian Lee, Joshua P
- 通讯作者:Sian Lee, Joshua P
(In)effectiveness of Accumulated Correction on COVID-19 Misinformation
对 COVID-19 错误信息的累积纠正的(中)有效性
- DOI:10.1037/tms0000004
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Seo, Haeseung;Xiong, Aiping;Lee, Sian;Lee, Dongwon
- 通讯作者:Lee, Dongwon
Effects of associative inference on individuals’ susceptibility to misinformation.
联想推理对个人对错误信息的敏感性的影响。
- DOI:10.1037/xap0000418
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Xiong, Aiping;Lee, Sian;Seo, Haeseung;Lee, Dongwon
- 通讯作者:Lee, Dongwon
If You Have a Reliable Source, Say Something: Effects of Correction Comments on COVID-19 Misinformation
如果您有可靠的消息来源,请说些什么:更正评论对 COVID-19 错误信息的影响
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Seo, Haeseung;Xiong, Aiping;Lee, Sian;Lee, Dongwon
- 通讯作者:Lee, Dongwon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aiping Xiong其他文献
Is Domain Highlighting Actually Helpful in Identifying Phishing Web Pages?
域名突出显示实际上有助于识别网络钓鱼网页吗?
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Aiping Xiong;R. Proctor;Weining Yang;Ninghui Li - 通讯作者:
Ninghui Li
Influence of referential coding in a choice task performed in a simulated driving cockpit
参考编码对模拟驾驶舱中执行的选择任务的影响
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Aiping Xiong - 通讯作者:
Aiping Xiong
Human Factors in the Privacy and Security of the Internet of Things
物联网隐私和安全中的人为因素
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Isis Chong;Aiping Xiong;R. Proctor - 通讯作者:
R. Proctor
Decreasing auditory Simon effects across reaction time distributions.
减少跨反应时间分布的听觉西蒙效应。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Aiping Xiong;R. Proctor - 通讯作者:
R. Proctor
Embedding Training Within Warnings Improves Skills of Identifying Phishing Webpages
在警告中嵌入培训可提高识别网络钓鱼网页的技能
- DOI:
10.1177/0018720818810942 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Aiping Xiong;R. Proctor;Weining Yang;Ninghui Li - 通讯作者:
Ninghui Li
Aiping Xiong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aiping Xiong', 18)}}的其他基金
Travel: NSF Student Travel Grant for 2024 ISOC Symposium on Vehicle Security and Privacy (VehicleSec)
旅行:2024 年 ISOC 车辆安全和隐私研讨会 (VehicleSec) 的 NSF 学生旅行补助金
- 批准号:
2419978 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RAPID: Informed and Ecological Decision Making of COVID-19 Vaccination
RAPID:COVID-19 疫苗接种的知情和生态决策
- 批准号:
2121097 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative: User-Centered Deployment of Differential Privacy
SaTC:核心:媒介:协作:以用户为中心的差异隐私部署
- 批准号:
1931441 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Designing Trustworthy and Transparent Information Platforms
EAGER:SaTC:早期跨学科合作:设计值得信赖且透明的信息平台
- 批准号:
2128642 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: A Case- and Play-Based Learning Module for Cybersecurity and Artificial Intelligence Education for Early Teen Learners
EAGER:SaTC-EDU:针对早期青少年学习者的网络安全和人工智能教育的基于案例和游戏的学习模块
- 批准号:
2113803 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Instilling a Mindset of Adversarial Thinking into Computer Science Courses Early and Often
EAGER:SaTC-EDU:尽早且经常地将对抗性思维方式灌输到计算机科学课程中
- 批准号:
2039354 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Designing Trustworthy and Transparent Information Platforms
EAGER:SaTC:早期跨学科合作:设计值得信赖且透明的信息平台
- 批准号:
1915755 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Collaborative: Advances in Socio-Algorithmic Information Diversity
EAGER:SaTC:早期跨学科合作:协作:社会算法信息多样性的进展
- 批准号:
1915833 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Improving the Bug Bounty System
EAGER:SaTC:早期跨学科合作:改进错误赏金系统
- 批准号:
1915815 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Multi-regulation computation
EAGER:SaTC:早期跨学科合作:多规则计算
- 批准号:
1915763 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Privacy-Preserving Mobile Data Collection for Social and Behavioral Research
EAGER:SaTC:早期跨学科合作:用于社会和行为研究的隐私保护移动数据收集
- 批准号:
1915828 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Collaborative: Advances in Socio-Algorithmic Information Diversity
EAGER:SaTC:早期跨学科合作:协作:社会算法信息多样性的进展
- 批准号:
1949077 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Developing the Concept of a Near Misses Analysis Capability and NTSB-Model for Cyber Incidents
EAGER:SaTC:早期跨学科合作:开发网络事件的未遂事件分析能力和 NTSB 模型的概念
- 批准号:
1915819 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant