Collaborative Research: Integrated memristor neural networks for in-situ analysis of intracellular neuronal recordings

合作研究:用于细胞内神经元记录原位分析的集成忆阻器神经网络

基本信息

  • 批准号:
    1915984
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

The ability to detect and analyze individual neuron spiking patterns over large areas will have profound impacts on neuroscience and medicine, as it allows the functions of the brain to be directly mapped to underlying neuron activities and enables precise brain disease detection and drug developments. However, although recent advances in neuroprobes such as nanoelectrode arrays make it possible to pick up signals from single neurons, scaling the systems to thousands and possibly millions of neuron sites is not practical due the enormous resources and time required to digitize, store and analyze the vast amount of data. This proposal aims to precisely address these challenges by integrating an artificial neural network on the nanoelectrode array, such that cell signals picked up by the electrodes are directly processed by the artificial neural network, and only the processed, "useful" data need to be amplified and transmitted, allowing real-time analysis with very low power. Undergraduate and graduate students will be trained to obtain state-of-the-art nanotechnology and neuroengineering techniques. Knowledge and techniques developed during research will be incorporated into course materials and other types of publications to allow cross pollination for students among different disciplines and broad dissemination to the general public. The proposed new neural recording system will offer unparalleled spatial resolution and processing capabilities, where high density and highly sensitive nanoelectrode arrays are integrated with a memristor-based artificial neural network that allows real time signal processing. By optimizing and utilizing internal dynamic ionic processes in the memristors, the artificial network can be directly driven by the spike trains from biological neurons without amplification or other pre-processing, where responses from the memristor network can be used to analyze temporal patterns in the neuron spikes and to connect detected neuronal activity with functions of the biological networks. The tightly coupled memristor network with the biological network can further allow functions in the biological system to be directly mapped on the electrical system, and potentially lead to future neural prosthesis and augmentation applications. New materials, devices, and networks will be developed, along with new recording and computing strategies that broaden the impact of the proposed project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
检测和分析大面积单个神经元尖峰模式的能力将对神经科学和医学产生深远的影响,因为它允许大脑功能直接映射到潜在的神经元活动,并使精确的脑部疾病检测和药物开发成为可能。然而,尽管纳米电极阵列等神经探针的最新进展使得从单个神经元获取信号成为可能,但由于数字化、存储和分析大量数据需要大量资源和时间,因此将系统扩展到数千甚至数百万个神经元位点是不切实际的。该提案旨在通过在纳米电极阵列上集成人工神经网络来精确解决这些挑战,这样由电极拾取的细胞信号由人工神经网络直接处理,只需要放大和传输处理过的“有用”数据,从而以非常低的功耗进行实时分析。本科生和研究生将接受培训,以获得最先进的纳米技术和神经工程技术。在研究期间发展的知识和技术将纳入课程材料和其他类型的出版物,以便不同学科之间的学生相互交流,并向公众广泛传播。新提出的神经记录系统将提供无与伦比的空间分辨率和处理能力,高密度和高灵敏度的纳米电极阵列与基于忆阻器的人工神经网络集成在一起,允许实时信号处理。通过优化和利用忆阻器内部动态离子过程,人工网络可以直接由来自生物神经元的尖峰序列驱动,而无需放大或其他预处理,其中来自忆阻器网络的响应可用于分析神经元尖峰中的时间模式,并将检测到的神经元活动与生物网络的功能联系起来。与生物网络紧密耦合的忆阻器网络可以进一步允许生物系统中的功能直接映射到电系统上,并有可能导致未来的神经假体和增强应用。将开发新的材料、设备和网络,以及新的记录和计算策略,以扩大拟议项目的影响。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donhee Ham其他文献

Anti-distortion bioinspired camera with an inhomogeneous photo-pixel array
具有非均匀光像素阵列的抗畸变仿生相机
  • DOI:
    10.1038/s41467-024-50271-7
  • 发表时间:
    2024-07-17
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Changsoon Choi;Henry Hinton;Hyojin Seung;Sehui Chang;Ji Su Kim;Woosang You;Min Sung Kim;Jung Pyo Hong;Jung Ah Lim;Do Kyung Hwang;Gil Ju Lee;Houk Jang;Young Min Song;Dae-Hyeong Kim;Donhee Ham
  • 通讯作者:
    Donhee Ham
High-speed integrated nanowire circuits
高速集成纳米线电路
  • DOI:
    10.1038/4341085a
  • 发表时间:
    2005-04-27
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Robin S. Friedman;Michael C. McAlpine;David S. Ricketts;Donhee Ham;Charles M. Lieber
  • 通讯作者:
    Charles M. Lieber
Synaptic connectivity mapping among thousands of neurons via parallelized intracellular recording with a microhole electrode array
通过微孔电极阵列的并行化细胞内记录在数千个神经元之间进行突触连接映射
  • DOI:
    10.1038/s41551-025-01352-5
  • 发表时间:
    2025-02-11
  • 期刊:
  • 影响因子:
    26.600
  • 作者:
    Jun Wang;Woo-Bin Jung;Rona S. Gertner;Hongkun Park;Donhee Ham
  • 通讯作者:
    Donhee Ham

Donhee Ham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donhee Ham', 18)}}的其他基金

Planning IUCRC at Harvard University: Center for Biological Applications of Solid-State Systems (CBASS)
哈佛大学规划 IUCRC:固态系统生物应用中心 (CBASS)
  • 批准号:
    1822151
  • 财政年份:
    2018
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
ITR: Statistical Electronics and Soliton Electronics - Two Novel Paradigms for High-Performance High-Speed Wireless Transceivers Design in Silicon
ITR:统计电子学和孤子电子学 - 硅中高性能高速无线收发器设计的两种新颖范式
  • 批准号:
    0313143
  • 财政年份:
    2003
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332661
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331295
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331296
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
  • 批准号:
    2332662
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
  • 批准号:
    2346650
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了