Privacy-Preserving Bayesian Inference: Foundations and Extensions

隐私保护贝叶斯推理:基础和扩展

基本信息

  • 批准号:
    1916002
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

This project provides a theoretical foundation and computational methodologies to conduct Bayesian statistical inference using differentially private data. Differential privacy is a mathematical framework that allows the release of potentially sensitive data in such a way that protects the confidentiality of individual records without unduly sacrificing its overall usefulness for statistical analysis. As our society today grapples with the privacy implications that accompany the exploding growth of large-scale datasets, the invention of differential privacy provides a solution to protect personal demographic and biological information without deterring the accumulation of public knowledge. The U.S. Census Bureau has officially adopted differential privacy as the disclosure avoidance method for the 2020 Census. Other data collectors and curators are expected to follow suit in the near future. This project answers the pressing need for new statistical theory and methods to appropriately understand and efficiently analyze differentially private data. The project will expand the repertoire of tools available to researchers, and contribute to the cause of creating a better informed and more transparent society while respecting individual privacy. The PI will work on a theoretical formulation of the definitions of differential privacy using imprecise probability constructions, including interval of measures and coherent upper-lower probability measures. In the Bayesian context, such a formulation delivers a robust-likelihood conception of the model and allows for the computation of bounds on posterior quantities based on differentially private data for arbitrary prior specifications. The PI also proposes the differentially private approximate Bayesian computation (ABC) algorithm, a noisy ABC algorithm that delivers exact posterior inference given differentially private observations subject to arbitrary additive noise. The algorithm permits differentially private inference from large-scale Bayesian models with intractable likelihoods. The project bridges the classic theories of robust Bayes and generalized Bayes, with the novel literature on statistical privacy, and derives practical implementations based on privacy-preserving data releases. The project will supply analysts and researchers in a timely fashion with inferential methodologies tailored for differentially private input that are both theoretically sound and computationally efficient.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目提供了一个理论基础和计算方法进行贝叶斯统计推断,使用不同的私人数据。差分隐私是一种数学框架,允许以保护个人记录机密性的方式发布潜在敏感数据,而不会过度牺牲其对统计分析的整体有用性。随着我们今天的社会努力应对伴随着大规模数据集爆炸式增长的隐私问题,差分隐私的发明提供了一种解决方案,可以保护个人人口统计和生物信息,而不会阻碍公共知识的积累。美国人口普查局已正式采用差异隐私作为2020年人口普查的披露避免方法。预计其他数据收集者和管理者将在不久的将来效仿。该项目回答了对新的统计理论和方法的迫切需求,以适当地理解和有效地分析差异化的私人数据。该项目将扩大研究人员可用的工具库,并有助于在尊重个人隐私的同时建立一个更知情和更透明的社会。 PI将使用不精确的概率构造(包括测量间隔和连贯的上下概率测量)来研究差分隐私定义的理论公式。在贝叶斯的上下文中,这样的配方提供了一个强大的似然模型的概念,并允许计算后验量的界限的基础上的差分私有数据为任意的先验规范。PI还提出了差分私有近似贝叶斯计算(ABC)算法,这是一种有噪声的ABC算法,可以在任意加性噪声的情况下提供精确的后验推断。该算法允许从大规模贝叶斯模型与棘手的似然性差异私人推断。该项目将鲁棒贝叶斯和广义贝叶斯的经典理论与统计隐私的新颖文献联系起来,并基于隐私保护数据发布导出实际实现。该项目将为分析人员和研究人员提供及时的推理方法,这些方法针对不同的私人输入,在理论上是合理的,在计算上是有效的。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Congenial Differential Privacy under Mandated Disclosure
强制披露下的一致差异隐私
Transparent Privacy is Principled Privacy
透明的隐私是有原则的隐私
  • DOI:
    10.1162/99608f92.b5d3faaa
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gong, Ruobin
  • 通讯作者:
    Gong, Ruobin
Exact Inference with Approximate Computation for Differentially Private Data via Perturbations
  • DOI:
    10.29012/jpc.797
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruobin Gong
  • 通讯作者:
    Ruobin Gong
Subspace Differential Privacy
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruobin Gong其他文献

Learning and total evidence with imprecise probabilities
具有不精确概率的学习和总证据
Rejoinder—A Gibbs Sampler for a Class of Random Convex Polytopes
Rejoinder——一类随机凸多面体的吉布斯采样器
Total Evidence and Learning with Imprecise Probabilities
全面的证据和不精确概率的学习
Informational richness and its impact on algorithmic fairness
信息丰富度及其对算法公平性的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Marcello Di Bello;Ruobin Gong
  • 通讯作者:
    Ruobin Gong
Simultaneous Inference under the Vacuous Orientation Assumption
空取向假设下的同时推理
  • DOI:
    10.1016/j.mbs.2018.01.009
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Ruobin Gong
  • 通讯作者:
    Ruobin Gong

Ruobin Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
  • 批准号:
    EP/Y033248/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
  • 批准号:
    EP/Z000262/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Preserving dark skies with neuromorphic camera technology
利用神经形态相机技术保护黑暗天空
  • 批准号:
    ST/Y50998X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了