The AGEP Data Engineering and Science Alliance Model: Training and Resources to Advance Minority Graduate Students and Postdoctoral Researchers into Faculty Careers
AGEP 数据工程和科学联盟模型:促进少数族裔研究生和博士后研究人员进入教师职业的培训和资源
基本信息
- 批准号:1916018
- 负责人:
- 金额:$ 38.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This collaborative research project brings together Rice University, Texas Southern University and the University of Houston, with the goal to develop, implement, study, evaluate, disseminate, sustain and potentially reproduce an AGEP Alliance Model to support and advance historically underrepresented minority (URM) STEM doctoral candidates and postdoctoral researchers into faculty positions in data engineering and science (DES) fields. The project employs a three-pronged approach: Professional development opportunities for faculty advisors and mentors; activities to address equity issues in institutional policies and procedures; and training for URM graduate students and postdoctoral researchers in key knowledge and skill areas that are essential to DES faculty member success: research, teaching, entrepreneurship, leadership and administration. The targeted outcomes of this AGEP DES Alliance Model project include the career advancement of URM doctoral candidates and postdoctoral scholars into faculty positions in DES fields; institutional changes to improve the retention of URM doctoral students, improve the equity of faculty hiring practices and remove systemic barriers to URM faculty and postdoctoral scholar success; and interest by other universities and colleges to reproduce the AGEP DES Alliance Model or specific interventions.The AGEP DES Alliance Model was created in response to the NSF's Alliances for Graduate Education and the Professoriate (AGEP) program solicitation (NSF 16-552). The AGEP program seeks to advance knowledge about models to improve pathways to the professoriate and success of URM graduate students, postdoctoral fellows and faculty in specific STEM disciplines and/or STEM education research fields. AGEP Alliances develop, replicate or reproduce, implement, and study, via integrated educational and social science research, AGEP Alliance Models to transform the dissertation phase of doctoral education, postdoctoral training and/or faculty advancement, and transitions within and across the pathway levels, of URMs in STEM and/or STEM education research careers. As the nation addresses a STEM achievement gap between URM and non-URM undergraduate and graduate students, our universities and colleges struggle to recruit, retain and promote URM STEM faculty who serve as role models and academic leaders for URM students to learn from, work with and emulate. Recent NSF reports indicate that URM STEM associate and full professors occupy only 8% of these senior faculty positions at all four-year colleges and universities, and only about 6% of these positions at the nation's most research-intensive institutions. The AGEP DES Alliance Model has the potential to advance a model to improve the success of URM graduate students and postdoctoral researchers as they enter faculty careers. Advancing the careers of URM faculty ultimately leads to improved academic mentorship for URM undergraduate students in DES research fields.The integrated education research being conducted by the AGEP DES Alliance Model team investigates factors that help or hinder URM STEM doctoral degree candidates' persistence to degree completion and success in securing postdoctoral or faculty appointments upon graduation. The research team is also investigating ways that hiring procedures might contain bias that hinders the hiring of URM candidates. This research will provide valuable insights to advance knowledge about the higher education contexts in which URM STEM doctoral degree recipients and postdoctoral researchers compete for faculty positions.The AGEP DES Alliance Model institutions are working with a team of external evaluators who are conducting formative and summative evaluations. This AGEP Alliance also engages four boards - an AGEP DES Alliance Model Advisory Board, an institutional Executive Leadership Board, a Research Advisory Board, and an Evaluation Advisory Board - that provide feedback to the institutions and the project team, and that suggest adjustments to the project management, to the integrated research project and to the model development, implementation, testing, evaluation, dissemination, sustainability and reproduction potential. The project team is disseminating findings from research, and from their work on the AGEP DES Alliance Model's development, implementation, self-study, evaluation, dissemination, sustainability and reproduction potential, by presenting at national conferences and publishing peer-reviewed articles in professional journals. Additionally, the Alliance is creating video and on-line materials about the AGEP DES Alliance Model and about the curricula used as part of the interventions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该合作研究项目汇集了莱斯大学,德克萨斯南方大学和休斯顿大学,目标是开发,实施,研究,评估,传播,维持和潜在地复制AGEP联盟模型,以支持和推进历史上代表性不足的少数民族(URM) STEM博士候选人和博士后研究人员进入数据工程和科学(DES)领域的教师职位。该项目采用三管齐下的方法:为教师顾问和导师提供专业发展机会;解决体制政策和程序中的公平问题的活动;在研究、教学、创业、领导和管理等关键知识和技能领域,为乌拉尔大学研究生和博士后研究人员提供培训。该AGEP DES联盟模型项目的目标成果包括:URM博士候选人和博士后学者在DES领域的职业发展;进行制度改革,以提高URM博士生的保留率,提高教师招聘的公平性,并消除URM教师和博士后学者成功的系统性障碍;以及其他高校复制AGEP DES联盟模式或具体干预措施的兴趣。AGEP DES联盟模型是根据美国国家科学基金会研究生教育和教授联盟(AGEP)项目招标(NSF 16-552)而创建的。AGEP计划旨在提高对模型的了解,以改善URM研究生,博士后研究员和教师在特定STEM学科和/或STEM教育研究领域的教授和成功途径。AGEP联盟通过综合教育和社会科学研究,开发、复制、实施和研究AGEP联盟模式,以改变博士教育的论文阶段、博士后培训和/或教师晋升,以及在STEM和/或STEM教育研究职业中urm内部和跨途径水平的过渡。随着国家解决URM和非URM本科生和研究生之间的STEM成就差距,我们的大学和学院努力招聘,留住和提升URM STEM教师,他们作为URM学生学习,合作和模仿的榜样和学术领袖。美国国家科学基金会最近的报告显示,在所有四年制学院和大学中,URM STEM副教授和正教授仅占这些高级教师职位的8%,而在美国最具研究密集型的机构中,这些职位仅占6%左右。AGEP DES联盟模式有潜力推进一种模式,以提高URM研究生和博士后研究人员在进入教师职业生涯时的成功。推进URM教师的职业生涯最终导致URM本科生在DES研究领域的学术指导得到改善。AGEP DES联盟模型团队进行的综合教育研究调查了有助于或阻碍URM STEM博士学位候选人坚持完成学位并在毕业后成功获得博士后或教员职位的因素。研究小组还在调查招聘过程中可能存在的偏见,从而阻碍了URM候选人的招聘。这项研究将提供有价值的见解,以提高对高等教育背景的认识,在这种背景下,URM STEM博士学位获得者和博士后研究人员竞争教师职位。AGEP DES联盟示范机构正在与外部评估人员团队合作,他们正在进行形成性和总结性评估。AGEP联盟还设有四个委员会——AGEP DES联盟模式咨询委员会、机构执行领导委员会、研究咨询委员会和评估咨询委员会——它们向机构和项目团队提供反馈,并对项目管理、综合研究项目和模式开发、实施、测试、评估、传播、可持续性和再生产潜力提出调整建议。项目小组通过在国家会议上发言和在专业期刊上发表同行评议的文章,传播研究结果,以及他们在AGEP DES联盟模式的发展、实施、自学、评价、传播、可持续性和再生产潜力方面的工作。此外,该联盟正在制作关于AGEP DES联盟模式和作为干预措施一部分的课程的视频和在线材料。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanadi Rifai其他文献
Deep Neural Networks with 3D Point Clouds for Empirical Friction Measurements in Hydrodynamic Flood Models
具有 3D 点云的深度神经网络用于水动力洪水模型中的经验摩擦测量
- DOI:
10.48550/arxiv.2404.02234 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Francisco Haces;Vasileios Kotzamanis;Craig Glennie;Hanadi Rifai - 通讯作者:
Hanadi Rifai
Hanadi Rifai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanadi Rifai', 18)}}的其他基金
Planning Grant: Engineering Research Center for Hurricane Urban Planning Hazards Research (HUPHR)
规划拨款:飓风城市规划灾害研究工程研究中心 (HUPHR)
- 批准号:
1840607 - 财政年份:2018
- 资助金额:
$ 38.84万 - 项目类别:
Standard Grant
RAPID: Chemical and Microbiological Quality of Floodwaters in Houston Following Hurricane Harvey
RAPID:飓风哈维后休斯顿洪水的化学和微生物质量
- 批准号:
1759440 - 财政年份:2017
- 资助金额:
$ 38.84万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
- 批准号:
2323984 - 财政年份:2024
- 资助金额:
$ 38.84万 - 项目类别:
Standard Grant
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 38.84万 - 项目类别:
Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
- 批准号:
2323983 - 财政年份:2024
- 资助金额:
$ 38.84万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the International Conference on Data Engineering (ICDE) 2024
旅行:2024 年国际数据工程会议 (ICDE) 的学生旅行支持
- 批准号:
2415174 - 财政年份:2024
- 资助金额:
$ 38.84万 - 项目类别:
Standard Grant
Conference: INTERNATIONAL SUMMER SCHOOL ON DATA SCIENCE AND ENGINEERING IN HEALTHCARE, MEDICINE AND BIOLOGY, JUNE 4 -10, 2023, CRETE, GREECE:
会议:国际医疗保健、医学和生物学数据科学与工程暑期学校,2023 年 6 月 4 日至 10 日,希腊克里特岛:
- 批准号:
2323134 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Microreaction Engineering by Autonomous Robotic Experimentation in Flow
协作研究:通过自主机器人实验进行数据驱动的微反应工程
- 批准号:
2208489 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Standard Grant
Integrating Data Science and Hands-on Experience into the Community College Biotechnology Classroom with Applications to Antibody Engineering
将数据科学和实践经验融入社区大学生物技术课堂并应用于抗体工程
- 批准号:
2300976 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Standard Grant
MRI: Track 2 Development of a Platform for Accessible Data-Intensive Science and Engineering
MRI:可访问数据密集型科学与工程平台的轨道 2 开发
- 批准号:
2320600 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
Standard Grant
OPEN INNOVATION PLATFORM FOR OPTIMISING PRODUCTION SYSTEMS BY COMBINING PRODUCT DEVELOPMENT, VIRTUAL ENGINEERING WORKFLOWS AND PRODUCTION DATA (PIONEER)
通过结合产品开发、虚拟工程工作流程和生产数据来优化生产系统的开放式创新平台(先锋)
- 批准号:
10063937 - 财政年份:2023
- 资助金额:
$ 38.84万 - 项目类别:
EU-Funded