Learning Decision Rules with Observational Data
用观察数据学习决策规则
基本信息
- 批准号:1916163
- 负责人:
- 金额:$ 14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The analysis of large-scale and complex data plays an increasingly central role in society, and innovations in machine learning are yielding ever more powerful predictive technologies. However, when we use such data to guide decision making, it is important to recognize that the majority of datasets in these domains are observational rather than randomized in nature, and require careful analysis in order to draw correct conclusions about the causal effect of deploying a potential policy. The research aims to develop new methods for data-driven decision making that can harness the power and expressiveness of machine learning, all while rigorously building on best practices for causal inference from non-randomized data.This project is centered around the following three statistical tasks: (1) Examine the problem of heterogeneous treatment effect estimation in observational studies, and develop a flexible framework that can be used with, e.g., boosting or neural networks. The accuracy of the proposed method depends on the complexity of the causal signal that we can intervene on, not on other merely associational signals. (2) Consider welfare maximizing structured policy learning, and study an approach whose regret decays as the inverse square root of the sample size in a non-parametric setting. (3) Consider the problem of learning optimal stopping rules from sequentially randomized data, and propose a new robust yet computationally feasible approach to policy learning in this setting. A unifying theme underlying all these results is that they highlight how classical ideas from semiparametric statistics can be used to rigorously leverage accurate machine learning predictors in decision-making problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对大规模复杂数据的分析在社会中发挥着越来越重要的作用,机器学习的创新正在产生越来越强大的预测技术。然而,当我们使用这些数据来指导决策时,重要的是要认识到这些领域的大多数数据集都是观察性的,而不是随机的,需要仔细分析,以便得出关于部署潜在政策的因果影响的正确结论。该研究旨在开发数据驱动决策的新方法,这些方法可以利用机器学习的力量和表现力,同时严格基于从非随机数据进行因果推理的最佳实践。该项目围绕以下三个统计任务:(1)检查观察性研究中异质性治疗效果估计的问题,并制定一个灵活的框架,例如,在一个实施例中,增强或神经网络。所提出的方法的准确性取决于我们可以干预的因果信号的复杂性,而不是其他仅仅是关联信号。(2)考虑福利最大化的结构化政策学习,并研究一种方法,其遗憾衰减为非参数设置中的样本大小的平方根倒数。(3)考虑从顺序随机数据中学习最优停止规则的问题,并提出一种新的鲁棒但计算上可行的策略学习方法。所有这些结果背后的一个统一主题是,它们突出了半参数统计的经典思想如何被用于在决策问题中严格利用准确的机器学习预测器。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local Linear Forests
局部线性森林
- DOI:10.1080/10618600.2020.1831930
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Friedberg, Rina;Tibshirani, Julie;Athey, Susan;Wager, Stefan
- 通讯作者:Wager, Stefan
policytree: Policy learning via doubly robust empirical welfare maximization over trees
政策树:通过树的双稳健经验福利最大化进行政策学习
- DOI:10.21105/joss.02232
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Sverdrup, Erik;Kanodia, Ayush;Zhou, Zhengyuan;Athey, Susan;Wager, Stefan
- 通讯作者:Wager, Stefan
Quasi-oracle estimation of heterogeneous treatment effects
- DOI:10.1093/biomet/asaa076
- 发表时间:2021-06-01
- 期刊:
- 影响因子:2.7
- 作者:Nie, X.;Wager, S.
- 通讯作者:Wager, S.
Learning When-to-Treat Policies
- DOI:10.1080/01621459.2020.1831925
- 发表时间:2020-11-28
- 期刊:
- 影响因子:3.7
- 作者:Nie, Xinkun;Brunskill, Emma;Wager, Stefan
- 通讯作者:Wager, Stefan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan Wager其他文献
CLUMPY RIFFLE SHUFFLES
块状 Riffe 洗牌
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Stefan Wager;Stefan Wager - 通讯作者:
Stefan Wager
Policy Learning with Competing Agents
与竞争代理的策略学习
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Roshni Sahoo;Stefan Wager - 通讯作者:
Stefan Wager
Title Sparsity Double Robust Inference of Average Treatment Effects Permalink
标题 平均治疗效果的稀疏双重鲁棒推理 永久链接
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Stefan Wager;Yinchu Zhu - 通讯作者:
Yinchu Zhu
The Efficiency of Density Deconvolution
密度反卷积的效率
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Stefan Wager - 通讯作者:
Stefan Wager
Learning from a Biased Sample
从有偏差的样本中学习
- DOI:
10.48550/arxiv.2209.01754 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Roshni Sahoo;Lihua Lei;Stefan Wager - 通讯作者:
Stefan Wager
Stefan Wager的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefan Wager', 18)}}的其他基金
Learning Decision Rules in Shifting Environments
学习不断变化的环境中的决策规则
- 批准号:
2242876 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Learning Decision Rules in Shifting Environments
学习不断变化的环境中的决策规则
- 批准号:
2242876 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
- 批准号:
2207727 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
- 批准号:
2207700 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
- 批准号:
2207647 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Causal Neural Mechanisms for Decision Making: Putting Rules into Context
决策的因果神经机制:将规则置于背景中
- 批准号:
2462350 - 财政年份:2020
- 资助金额:
$ 14万 - 项目类别:
Studentship
Evaluating diagnostic accuracy of tests and decision rules in the absence of a perfect reference test: Application to extrapulmonary tuberculosis
在缺乏完美参考测试的情况下评估测试和决策规则的诊断准确性:在肺外结核中的应用
- 批准号:
371086 - 财政年份:2017
- 资助金额:
$ 14万 - 项目类别:
Operating Grants
Sex-specific DNA methylation marks in VKORC1 and UBIAD1 as variables in clinical decision rules for recurrent VTE
VKORC1 和 UBIAD1 中性别特异性 DNA 甲基化标记作为复发性 VTE 临床决策规则中的变量
- 批准号:
377882 - 财政年份:2017
- 资助金额:
$ 14万 - 项目类别:
Operating Grants
Validation of Decision Rules for CT Use in Children with Abdominal or Head Trauma
腹部或头部创伤儿童 CT 使用决策规则的验证
- 批准号:
9177011 - 财政年份:2016
- 资助金额:
$ 14万 - 项目类别:
Investigating the effects of decision rules in group decision making - Theory and Experiments
研究决策规则在群体决策中的影响 - 理论与实验
- 批准号:
314978473 - 财政年份:2016
- 资助金额:
$ 14万 - 项目类别:
Research Grants
Decision-making based on social conventional rules in elderly people
基于社会惯例规则的老年人决策
- 批准号:
15K13116 - 财政年份:2015
- 资助金额:
$ 14万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research