Collaborative Research: Integrating Multi-Dimensional Omics Data for Quantifying Disease Heterogeneity
合作研究:整合多维组学数据以量化疾病异质性
基本信息
- 批准号:1916251
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many complex diseases such as cancer demonstrate significant across-patient heterogeneity. For a better understanding of disease biology and optimally selecting treatment strategies, it is important to properly model disease heterogeneity. This project will develop a novel framework for modeling disease heterogeneity through the effective integration of information from multiple types of highly complex omics measurements. The proposed analysis framework and approaches will have significant broader impact. Applications of the methods will lead to more accurate identification of heterogeneous patient groups as well as their omics characteristics, which will facilitate the identification/definition of disease subtypes, treatment selection, and clinical decision-making. Data on skin and lung cancer will be analyzed leading to heterogeneity models that will be valuable to basic science researchers and clinicians. The project also involves education and training of graduate students at Yale University and the University of Iowa.High-dimensional omics data have been shown to be highly effective for heterogeneity analysis. Taking advantage of recent developments in multi-dimensional profiling under which data are collected on multiple types of omics measurements, the investigators will systematically develop novel integrated analysis strategies and approaches. Specifically, three sets of methods will be developed under the novel PFR (penalized fused regression) framework. Model averaging will be further developed to facilitate computation and provide additional insights into the proposed approaches. Extensive and rigorous methodological, computational, and theoretical investigations will be conducted. This project will make fundamental contributions to high-dimensional statistics and disease heterogeneity analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多复杂的疾病,如癌症,表现出显着的跨患者异质性。为了更好地理解疾病生物学和最佳选择治疗策略,正确建模疾病异质性是很重要的。 该项目将开发一种新的框架,通过有效整合来自多种类型的高度复杂的组学测量的信息来建模疾病异质性。 拟议的分析框架和方法将产生广泛的重大影响。 这些方法的应用将导致更准确地识别异质性患者群体及其组学特征,这将有助于识别/定义疾病亚型、治疗选择和临床决策。 将对皮肤癌和肺癌的数据进行分析,得出对基础科学研究人员和临床医生有价值的异质性模型。 该项目还涉及耶鲁大学和爱荷华州大学研究生的教育和培训。高维组学数据已被证明是异质性分析的高效方法。利用多维分析的最新发展,在多维分析下收集多种类型的组学测量数据,研究人员将系统地开发新的综合分析策略和方法。具体而言,三套方法将开发下的新的PFR(惩罚融合回归)框架。将进一步开发模型平均法,以便于计算,并为拟议的方法提供更多的见解。将进行广泛和严格的方法,计算和理论研究。 该项目将为高维统计和疾病异质性分析做出根本性贡献。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assisted estimation of gene expression graphical models.
- DOI:10.1002/gepi.22377
- 发表时间:2021-06
- 期刊:
- 影响因子:2.1
- 作者:Yi H;Zhang Q;Sun Y;Ma S
- 通讯作者:Ma S
Subgroup analysis for high-dimensional functional regression
- DOI:10.1016/j.jmva.2022.105100
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Xiaochen Zhang;Qingzhao Zhang;Shuangge Ma;Kuangnan Fang
- 通讯作者:Xiaochen Zhang;Qingzhao Zhang;Shuangge Ma;Kuangnan Fang
Bayesian finite mixture of regression analysis for cancer based on histopathological imaging–environment interactions
基于组织病理学成像与环境相互作用的癌症贝叶斯有限混合回归分析
- DOI:10.1093/biostatistics/kxab038
- 发表时间:2021
- 期刊:
- 影响因子:2.1
- 作者:Im, Yunju;Huang, Yuan;Tan, Aixin;Ma, Shuangge
- 通讯作者:Ma, Shuangge
Network-adaptive robust penalized estimation of time-varying coefficient models with longitudinal data
- DOI:10.1080/00949655.2022.2055758
- 发表时间:2022-03-26
- 期刊:
- 影响因子:1.2
- 作者:Fang,Kuangnan;Fan,Xinyan;Zhang,Qingzhao
- 通讯作者:Zhang,Qingzhao
Heterogeneous graphical model for non-negative and non-Gaussian PM2.5 data
- DOI:10.1111/rssc.12575
- 发表时间:2022-06-22
- 期刊:
- 影响因子:1.6
- 作者:Zhang, Jiaqi;Fan, Xinyan;Ma, Shuangge
- 通讯作者:Ma, Shuangge
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuangge Ma其他文献
Book review: Tsiatis, A.A. 2006: Semiparametric Theory and Missing Data. Springer
- DOI:
10.1177/09622802080170051002 - 发表时间:
2008-10 - 期刊:
- 影响因子:2.3
- 作者:
Shuangge Ma - 通讯作者:
Shuangge Ma
In Regard to Vaidya et al.
关于 Vaidya 等人。
- DOI:
10.1016/j.ijrobp.2016.06.2460 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Henry S. Park;Shuangge Ma;L. Wilson;M. Moran - 通讯作者:
M. Moran
Collective versus Individual Effects in Survival Analysis of Multiple Failures
多重故障生存分析中的集体效应与个体效应
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jialiang Li;Zhipeng Huang;Shuangge Ma;Mei - 通讯作者:
Mei
SOCIOECONOMIC STATUS MODIFIES THE EFFECT OF RACE ON LIFE EXPECTANCY AFTER ACUTE MYOCARDIAL INFARCTION
- DOI:
10.1016/s0735-1097(15)62161-1 - 发表时间:
2015-03-17 - 期刊:
- 影响因子:
- 作者:
Emily Marie Bucholz;Yun Wang;Shuangge Ma;Sharon-Lise Normand;Harlan Krumholz - 通讯作者:
Harlan Krumholz
Subgroup Analysis of Differential Networks with Latent Variables
- DOI:
10.1007/s11222-025-10681-z - 发表时间:
2025-07-02 - 期刊:
- 影响因子:1.600
- 作者:
Linxi Li;Shuangge Ma;Qingzhao Zhang - 通讯作者:
Qingzhao Zhang
Shuangge Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuangge Ma', 18)}}的其他基金
Unsupervised and Semisupervised Heterogeneity Analysis Based on Gaussian Graphical Models
基于高斯图模型的无监督和半监督异质性分析
- 批准号:
2209685 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Novel methods for pharmacogenomic data analysis using gene clusters
合作研究:使用基因簇进行药物基因组数据分析的新方法
- 批准号:
0904181 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Proposal: Novel Semiparametric Two-part Models: New Theories and Applications
合作提案:新颖的半参数两部分模型:新理论和应用
- 批准号:
0805984 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325835 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325837 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344765 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325838 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
- 批准号:
2344766 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
- 批准号:
2325836 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
- 批准号:
2231077 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant