Nonparametric Confidence Sequences and their Applications

非参数置信序列及其应用

基本信息

  • 批准号:
    1916320
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Large scale sequential testing and estimation is now a daily task in the tech industry, with large internet companies running hundreds or thousands of experiments (sometimes called A/B tests) per week to understand their customer base preferences, in order to improve product performance and user experience. Such experiments are inherently sequential: visitors arrive in a stream and outcomes are typically observed quickly relative to the duration of the test. These experiments are loosely planned: there are few hurdles to starting a new test, and little oversight on how they are run, unlike clinical trials which are heavily regulated with clear formal planning due to the involvement of statisticians from the start. The experiments are also continuously monitored, and adaptive choices are made of whether to stop early and make conclusions, or to collect more data. In other words, sample sizes and budgets are rarely fixed in stone in advance and there is plenty of flexibility at the hands of the data scientist who is running the experiment. Such situations are common in the sciences as well, with either telescopes collecting astronomical data sequentially (and perhaps testing for presence of black holes or estimating sizes of galaxies), or psychologists collecting human subject data sequentially (and analyzing effect sizes along the way). However, a major drawback of such flexible, loosely planned, sequential experimentation with fluid decision making, is that it is very nontrivial to provide correct inferential guarantees, either along the way or when the experiment is terminated. Traditional confidence intervals and p-values, the bread and butter of classical statistics, are designed for fixed sample sizes, and can only be used once at that predetermined time. Using the standard CIs repeatedly at different sample sizes, or after adaptively stopping, without any correction to account for the multiple intervals constructed, completely invalidates their guarantees, leading to an increase in erroneous conclusions. The graduate student support will be used for research on sequential analysis and concentration inequalities.The PI proposes to revisit a classical notion called a "confidence sequence" by Darling and Robbins (1967), which is a (potentially infinite) sequence of confidence intervals that is, with high probability, simultaneously valid over all times. Due to the simultaneous guarantee, an analyst may keep peeking at the data and the constructed confidence sequence, adaptively choosing to stop collecting data or to collect more, and still have correct inferential guarantees through the process including when it stops. These can be converted to always-valid p-values, that are also valid at arbitrary stopping times. Using modern martingale techniques, we have recently been able to generalize prior constructions of confidence sequences to several novel nonparametric settings, yielding both the tightest known closed-form CS expressions as well as the sharpest numerical methods in practice. This project seeks to extend the scope of the above advances both theoretically and practically. A few examples of extensions that the PI wishes to pursue include designing new confidence sequences for vector-valued mean vectors, and fully empirical bounds that do not depend on unknown parameters. We will also explore applications of these bounds to sequential testing and estimation tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模的顺序测试和评估现在是科技行业的日常任务,大型互联网公司每周都会进行数百或数千次实验(有时称为A/B测试),以了解他们的客户群偏好,从而提高产品性能和用户体验。这样的实验本质上是连续的:访问者在一个流中到达,结果通常相对于测试的持续时间很快被观察到。这些实验计划松散:开始一项新的测试几乎没有什么障碍,对它们如何运行的监督也很少,不像临床试验,由于统计学家从一开始就参与其中,因此受到严格的监管,有明确的正式计划。实验也会被持续监控,并做出适应性的选择,是提前停止并得出结论,还是收集更多的数据。换句话说,样本大小和预算很少是事先固定的,运行实验的数据科学家有很大的灵活性。这种情况在科学领域也很常见,要么是望远镜按顺序收集天文数据(也许是测试黑洞的存在或估计星系的大小),要么是心理学家按顺序收集人类受试者的数据(并在此过程中沿着分析效应大小)。然而,这种灵活的,松散的计划,连续的实验与流体决策的一个主要缺点是,它是非常重要的,以提供正确的推理保证,无论是沿着或当实验结束。传统的置信区间和p值,经典统计学的面包和黄油,是为固定的样本量设计的,并且只能在预定的时间使用一次。在不同的样本量下重复使用标准CI,或在自适应停止后,不进行任何校正以解释构建的多个区间,完全使其保证无效,导致错误结论增加。研究生支持将用于序列分析和浓度不等式的研究。PI建议重新审视Darling和Robbins(1967)称为“置信序列”的经典概念,这是一个(潜在无限)置信区间序列,具有高概率,在所有时间内同时有效。由于同时保证,分析人员可以继续窥视数据和构造的置信序列,自适应地选择停止收集数据或收集更多数据,并且在整个过程中(包括停止时)仍然具有正确的推理保证。这些可以转换为始终有效的p值,在任意停止时间也有效。使用现代鞅技术,我们最近已经能够推广到几个新的非参数设置的置信序列的先验结构,产生最紧密的已知的封闭形式的CS表达式,以及在实践中最尖锐的数值方法。本项目旨在从理论和实践两方面扩大上述进展的范围。PI希望追求的扩展的几个例子包括为向量值均值向量设计新的置信序列,以及不依赖于未知参数的完全经验边界。我们还将探索这些界限在顺序测试和评估任务中的应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainty quantification using martingales for misspecified Gaussian processes
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Neiswanger;Aaditya Ramdas
  • 通讯作者:
    W. Neiswanger;Aaditya Ramdas
Universal inference
  • DOI:
    10.1073/pnas.1922664117
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Wasserman;Aaditya Ramdas;Sivaraman Balakrishnan
  • 通讯作者:
    L. Wasserman;Aaditya Ramdas;Sivaraman Balakrishnan
SIMULTANEOUS HIGH-PROBABILITY BOUNDS ON THE FALSE DISCOVERY PROPORTION IN STRUCTURED, REGRESSION AND ONLINE SETTINGS
  • DOI:
    10.1214/19-aos1938
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Katsevich, Eugene;Ramdas, Aaditya
  • 通讯作者:
    Ramdas, Aaditya
Nonparametric Iterated-Logarithm Extensions of the Sequential Generalized Likelihood Ratio Test
序贯广义似然比检验的非参数迭代对数扩展
Confidence sequences for sampling without replacement
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ian Waudby-Smith;Aaditya Ramdas
  • 通讯作者:
    Ian Waudby-Smith;Aaditya Ramdas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaditya Ramdas其他文献

Deep anytime-valid hypothesis testing
深入的随时有效的假设检验
  • DOI:
    10.48550/arxiv.2310.19384
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Pandeva;Patrick Forr'e;Aaditya Ramdas;S. Shekhar
  • 通讯作者:
    S. Shekhar
Martingale Methods for Sequential Estimation of Convex Functionals and Divergences
用于凸泛函和散度的顺序估计的 Martingale 方法
Auditing Fairness by Betting
通过投注审计公平性
  • DOI:
    10.48550/arxiv.2305.17570
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ben Chugg;Santiago Cortes;Bryan Wilder;Aaditya Ramdas
  • 通讯作者:
    Aaditya Ramdas
Which Wilcoxon should we use? An interactive rank test and other alternatives
我们应该使用哪种 Wilcoxon?
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boyan Duan;Aaditya Ramdas;L. Wasserman
  • 通讯作者:
    L. Wasserman
A unified recipe for deriving (time-uniform) PAC-Bayes bounds
用于导出(时间均匀)PAC-贝叶斯界限的统一方法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ben Chugg;Hongjian Wang;Aaditya Ramdas
  • 通讯作者:
    Aaditya Ramdas

Aaditya Ramdas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaditya Ramdas', 18)}}的其他基金

Game-theoretic statistics and safe anytime-valid inference
博弈论统计和安全且随时有效的推理
  • 批准号:
    2310718
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
CAREER: Online Multiple Hypothesis Testing: A Comprehensive Treatment
职业:在线多重假设检验:综合治疗
  • 批准号:
    1945266
  • 财政年份:
    2020
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant

相似海外基金

Increasing confidence in Australian carbon disclosures
增强对澳大利亚碳披露的信心
  • 批准号:
    DP240100414
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Discovery Projects
An Empirical Study of the Determinants and Consequences of Citizens' Confidence in the Armed Forces
公民对武装部队信心的决定因素及其后果的实证研究
  • 批准号:
    23KJ2013
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Drive with Confidence: A Safe and Secure Driving System to Mitigate Remote Vehicle Hijacking Risks
放心驾驶:安全可靠的驾驶系统,可降低远程车辆劫持风险
  • 批准号:
    10077064
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
  • 批准号:
    2796588
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Studentship
Single-Molecule High-Confidence Detection of miRNA Cancer Biomarkers
miRNA 癌症生物标志物的单分子高置信度检测
  • 批准号:
    10612611
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
Development and testing of a tool to assess health workers' clinical confidence to provide perinatal bereavement care in Sub-Saharan Africa
开发和测试工具来评估卫生工作者在撒哈拉以南非洲地区提供围产期丧亲护理的临床信心
  • 批准号:
    MR/X004082/1
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
A novel mobile application improves balance confidence in walking aid users
新颖的移动应用程序提高了助行器用户的平衡信心
  • 批准号:
    497850
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
ATD: Algorithms for Real-time Dynamic Risk Identification with Statistical Confidence
ATD:具有统计置信度的实时动态风险识别算法
  • 批准号:
    2220537
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Using AI to improve our understanding of verbal confidence and to aid decision-making: Eyewitness lineup identification as a model case
使用人工智能提高我们对言语信心的理解并辅助决策:以目击者阵容识别为典型案例
  • 批准号:
    2241989
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Continuing Grant
Building Confidence through Inquiry, Research, Community Leadership, and Engagement
通过探究、研究、社区领导和参与建立信心
  • 批准号:
    2236107
  • 财政年份:
    2023
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了