Scalable Statistical Inference in Small-World Networks

小世界网络中的可扩展统计推断

基本信息

  • 批准号:
    1916378
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Social networks often exhibit "small-world features". For instance, friends typically share many common friends, but most individuals have a limited number of close acquaintances irrespective of the size of the network. Another well-documented feature of such networks is the "six degrees of separation property", whereby most people are a small number of social connections away from one another. Despite their ubiquity, common statistical models of complex networks do not typically generate graphs with these properties. Therefore, the main goal of this project is to address the general lack of plausible and tractable statistical models of small-world networks. Specifically, the PIs will develop a novel framework for the inference of these networks, including statistical models, fast and scalable algorithms, as well as supporting theory. These models and methods will be empirically validated through the development and deployment of techniques that sample large graphs in ways that helps assess them. This new understanding will contribute to ongoing interdisciplinary collaborations in journalism, health care, and law. Existing probabilistic constructions of small-world networks, i.e., random graphs exhibiting low diameter, sparsity and transitivity, tend to be ad-hoc and, hence, often not suitable for statistical inference. In this project, the PIs will formulate and analyze interpretable statistical models of small-world networks; and develop scalable statistical inference for such models based on both spectral techniques and local sampling. For this purpose, the PIs will develop and explore a family of network models with high-dimensional latent features. The PIs will analyze how traditional algorithms perform in this regime, and will develop and analyze local sampling algorithms, such as respondent-driven sampling. The information-theoretic limit of community detection will also be studied. This grant will support the development of two courses aimed at intermediate undergraduates in UW- Madison's new undergraduate data science degree. These courses will aim to broaden engagement in both data science and social network analysis. This grant will also support the training of PhD students in both Statistics and Mathematics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社交网络经常表现出"小世界特征"。 例如,朋友通常会分享许多共同的朋友,但大多数人的亲密熟人数量有限,无论网络的大小如何。 这种网络的另一个有据可查的特征是"六度分离属性",即大多数人彼此之间只有少量的社会联系。尽管它们普遍存在,但复杂网络的常见统计模型通常不会生成具有这些属性的图。因此,该项目的主要目标是解决小世界网络普遍缺乏合理和易于处理的统计模型的问题。具体来说,PI将为这些网络的推理开发一个新的框架,包括统计模型,快速和可扩展的算法以及支持理论。这些模型和方法将通过开发和部署以有助于评估的方式对大型图表进行采样的技术来进行经验验证。这种新的理解将有助于新闻,医疗保健和法律正在进行的跨学科合作。小世界网络的现有概率构造,即,表现出低直径、稀疏性和传递性的随机图往往是ad-hoc的,因此通常不适合于统计推断。在这个项目中,PI将制定和分析小世界网络的可解释的统计模型;并基于频谱技术和局部采样为这些模型开发可扩展的统计推断。为此,PI将开发和探索一系列具有高维潜在特征的网络模型。PI将分析传统算法在此机制中的表现,并将开发和分析本地采样算法,例如响应者驱动的采样。社区检测的信息论极限也将被研究。这笔赠款将支持两门课程的发展,旨在在华盛顿大学-麦迪逊的新本科数据科学学位的中级本科生。这些课程旨在扩大数据科学和社交网络分析的参与。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sufficient condition for root reconstruction by parsimony on binary trees with general weights
一般权二叉树简约重建根的充分条件
A New Basis for Sparse Principal Component Analysis
Targeted sampling from massive block model graphs with personalized PageRank
Asymptotic seed bias in respondent-driven sampling
受访者驱动抽样中的渐近种子偏差
  • DOI:
    10.1214/20-ejs1698
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Yan, Yuling;Hanlon, Bret;Roch, Sebastien;Rohe, Karl
  • 通讯作者:
    Rohe, Karl
Impossibility of Consistent Distance Estimation from Sequence Lengths Under the TKF91 Model
TKF91模型下不可能根据序列长度进行一致的距离估计
  • DOI:
    10.1007/s11538-020-00801-3
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Fan, Wai-Tong Louis;Legried, Brandon;Roch, Sebastien
  • 通讯作者:
    Roch, Sebastien
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sebastien Roch其他文献

Sebastien Roch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sebastien Roch', 18)}}的其他基金

Principled phylogenomic analysis without gene tree estimation
无需基因树估计的有原则的系统发育分析
  • 批准号:
    2308495
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Probability Questions in Phylogenetics
系统发育学中的概率问题
  • 批准号:
    1614242
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Probabilistic Techniques in Mathematical Phylogenetics
数学系统发育学中的概率技术
  • 批准号:
    1248176
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Phylogenomics - New Computational Methods through Stochastic Modeling and Analysis
职业:系统基因组学 - 通过随机建模和分析的新计算方法
  • 批准号:
    1149312
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Probabilistic Techniques in Mathematical Phylogenetics
数学系统发育学中的概率技术
  • 批准号:
    1007144
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
  • 批准号:
    2338760
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
STATISTICAL AND COMPUTATIONAL THRESHOLDS IN SPIN GLASSES AND GRAPH INFERENCE PROBLEMS
自旋玻璃和图推理问题的统计和计算阈值
  • 批准号:
    2347177
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Distribution-Free and Adaptive Statistical Inference
职业:无分布和自适应统计推断
  • 批准号:
    2338464
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Development of statistical inference of extended Hawkes processes including missing data problem
扩展霍克斯过程的统计推断的发展,包括缺失数据问题
  • 批准号:
    23H03358
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
  • 批准号:
    2237322
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Inference in High Dimensions using Variational Approximations
职业:使用变分近似进行高维统计推断
  • 批准号:
    2239234
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Developing Statistical Tools for Data integration and Data Fusion for Finite Population Inference
开发用于有限总体推理的数据集成和数据融合的统计工具
  • 批准号:
    2242820
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了