GOALI/Collaborative Research: Future Underground Landscape - Learning from Large Excavations in a Complex Urban Environment
GOALI/合作研究:未来地下景观 - 从复杂城市环境中的大型挖掘中学习
基本信息
- 批准号:1917168
- 负责人:
- 金额:$ 32.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In megacities such as Los Angeles, San Francisco, and New York, urban sprawl is no longer a viable or desirable option, so demand for underground space - a non-renewable resource - continues to increase. A challenge in many urban areas is in constructing and developing below surface space while limiting impacts to existing surface and subsurface development in heavily-built environments and varying soil conditions. New and improved engineering tools are needed to meet ever more stringent design goals. Despite their capabilities, the reliability of our available predictive models is limited by the sparse data from construction projects. Major expansions of the Los Angeles Metro system approved by Los Angeles voters as part of Measure R and Measure M provide a unique opportunity to collect and utilize data needed to improve our understanding of excavation performance. This Grant Opportunities for Academic Liaison with Industry (GOALI) collaborative research project brings together personnel from academia, public agencies and private industry to leverage over-$11-billion-dollar public investments in large scale excavations to improve the understanding of the influence of ground conditions and construction processes on excavations. This project will provide tools and techniques, including modeling, data sharing, and investigation methods, to enhance the cost-effectiveness of urban underground construction. The successful completion of this project and the acquired knowledge provide valuable information that can be applied to large upcoming underground infrastructure investments throughout the US.The targeted excavations, completed or under construction, are geographically distributed and variable in size and settings, and provide ideal testbeds for research activities aimed at learning from the observed excavation performance. We will access 13 large excavations in the LA Metro system and more importantly, deploy advanced and emerging technologies to acquire and curate unique time sensitive and perishable data on excavation and soil response beyond what is currently available in our empirical databases and numerical models. A novel framework for data sharing, storage and authentication based on the rapidly evolving block chain technology will be developed for the first time for geotechnical and construction use. The project will significantly advance state-of-the-art excavation modeling, through tools that employ conventional and deep learning-based soil modeling techniques and three-dimensional city block scale models, as well as the development of empirical models with application to urban excavations nationally and globally. In addition, this project will engage undergraduate students, with a special focus on low-income, first-generation college students from CSULB, to work with graduate research assistants from UCI and UIUC. There are currently very few students graduating from US higher education programs with training in underground construction. Students working on this project will gain invaluable real-world experience on a major construction project, and will interact with both researchers and consultants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在洛杉矶、旧金山和纽约等特大城市,城市扩张不再是一个可行或可取的选择,因此对地下空间--一种不可再生资源--的需求继续增加。许多城市地区面临的一项挑战是,如何在建造密集的环境和不同的土壤条件下建造和开发地下空间,同时限制对现有地表和地下开发的影响。需要新的和改进的工程工具来满足越来越严格的设计目标。尽管我们的预测模型功能强大,但我们现有的预测模型的可靠性受到建筑项目稀疏数据的限制。作为措施R和措施M的一部分,洛杉矶选民批准对洛杉矶地铁系统进行重大扩建,这为收集和利用改善我们对挖掘性能的了解所需的数据提供了一个独特的机会。GOALI学术联络机会(GOALI)合作研究项目汇集了学术界、公共机构和私营行业的人员,利用超过110亿美元的公共投资进行大规模挖掘,以提高对地面条件和施工过程对挖掘影响的了解。该项目将提供工具和技术,包括建模、数据共享和调查方法,以提高城市地下建设的成本效益。该项目的成功完成和所获得的知识提供了宝贵的信息,可以应用于美国各地即将进行的大型地下基础设施投资。目标挖掘,无论是已完成的还是正在建设的,都是地理上分布的,大小和环境都不同,为旨在从观察到的挖掘性能中学习的研究活动提供了理想的试验台。我们将访问洛杉矶地铁系统中的13个大型挖掘,更重要的是,部署先进的新兴技术来获取和管理关于挖掘和土壤响应的独特的时间敏感和易腐烂的数据,而不是我们现有的经验数据库和数值模型中提供的数据。基于快速发展的区块链技术的数据共享、存储和身份验证的新框架将首次开发用于岩土和建筑用途。该项目将通过使用基于传统和深度学习的土壤建模技术和三维城市街区比例模型的工具,以及开发应用于全国和全球城市挖掘的经验模型,显著推动最先进的挖掘建模。此外,该项目将吸引本科生,特别是来自CSULB的低收入第一代大学生,与UCI和UIUC的研究生研究助理合作。目前,从美国高等教育项目毕业并接受地下建筑培训的学生寥寥无几。参与该项目的学生将在重大建设项目中获得宝贵的现实世界经验,并将与研究人员和顾问进行互动。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of Empirical Methods for Estimating Tunneling-Induced Ground Movements—Los Angeles Metro K Line Crenshaw/LAX Transit Project
估算隧道引起的地面运动的经验方法评估——洛杉矶地铁 K 线克伦肖/洛杉矶国际机场交通项目
- DOI:10.1061/9780784484708.047
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhao, Wendi;Hashash, Youssef M.;Jasiak, Maksymilian;Lawrence, Jack;Hutter, Abby;Bernard, Timothy;Josephina Szewczyk, Alicia;Beaino, Charbel;Pearce, Michael;Lemnitzer, Anne
- 通讯作者:Lemnitzer, Anne
Effects of Tar on CPT and Shear Wave Velocity Correlations for the LA Metro Purple Line (D-Line)
焦油对洛杉矶地铁紫线(D 线)CPT 和剪切波速度相关性的影响
- DOI:10.1061/9780784484708.019
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chrysovergis, Taki;Lemnitzer, Anne;Star, Lisa M.;Rodriguez, Joseph;Hashash, Youssef;Sathialingam, Namasivayam;Cording, Edward;O’Rourke, Thomas D.
- 通讯作者:O’Rourke, Thomas D.
Semi-Empirical Method for Excavation-Induced Surface Displacements—Los Angeles Metro K Line Crenshaw/LAX Transit Project
开挖引起的表面位移的半经验方法 - 洛杉矶地铁 K 线克伦肖/洛杉矶国际机场交通项目
- DOI:10.1061/9780784484708.046
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Beaino, Charbel;Hashash, Youssef M.;Bernard, Timothy;Hutter, Abby;Jasiak, Maksymilian;Lawrence, Jack;Szewczyk, Alicia;Zhao, Wendi;Pearce, Michael;Lemnitzer, Anne
- 通讯作者:Lemnitzer, Anne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne Lemnitzer其他文献
Seismic response behavior of deep flexible underground structures in sand-insights from an experimental–numerical investigation
- DOI:
10.1007/s10518-022-01388-x - 发表时间:
2022-04-13 - 期刊:
- 影响因子:4.100
- 作者:
Lohrasb Keykhosropour;Anne Lemnitzer - 通讯作者:
Anne Lemnitzer
Anne Lemnitzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne Lemnitzer', 18)}}的其他基金
RAPID/Collaborative Research: Geotechnical and Geoenvironmental Properties of the Ahr Valley and Their Role in Structural Damage During Recent Flooding
快速/合作研究:阿尔河谷的岩土工程和地质环境特性及其在近期洪水期间结构破坏中的作用
- 批准号:
2213714 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
CAREER: Beyond the Code - Towards Next Generation Design for Deep Foundations
职业生涯:超越规范 - 迈向下一代深层基础设计
- 批准号:
1752303 - 财政年份:2018
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
RAPID: U.S. Instrumentation and Data Processing of a Large-Scale Experiment on Soil-Structure Interaction of Underground Structures on the E-Defense Shake Table in Miki, Japan
RAPID:美国在日本三木 E-Defense 振动台上进行的地下结构土-结构相互作用大规模实验的仪器和数据处理
- 批准号:
1203212 - 财政年份:2011
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
- 批准号:
2245117 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129825 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129776 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
- 批准号:
2219788 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
- 批准号:
2302217 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147126 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
- 批准号:
2147122 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
Collaborative Research: ISS: GOALI: Transients and Instabilities in Flow Boiling and Condensation Under Microgravity
合作研究:ISS:GOALI:微重力下流动沸腾和冷凝的瞬态和不稳定性
- 批准号:
2126461 - 财政年份:2021
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
Collaborative Research/GOALI: Fully Continuous Downstream Processing Enabled by Coupled Precipitation-Filtration Capture Operations
协作研究/GOALI:通过耦合沉淀-过滤捕获操作实现完全连续的下游处理
- 批准号:
2032261 - 财政年份:2021
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
Collaborative Research & GOALI: Direct-Fed Ethanol Metal-Supported Solid Oxide Fuel Cells
合作研究
- 批准号:
2050691 - 财政年份:2021
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant