Collaborative Research: Plasmonically-Induced Phase-Correlated Ultralong Transport of Excitation Energy in Viral Quantum Dot Circuits

合作研究:病毒量子点电路中等离子体诱导的相位相关超长激发能量传输

基本信息

  • 批准号:
    1917544
  • 负责人:
  • 金额:
    $ 29.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

An inspiring feature of certain photosynthetic organisms is their ability to transfer energy from one protein to another with significant efficiency and range. It has been shown that such a remarkable light harvesting process is deeply rooted in quantum mechanical processes at physiological temperatures. Imitating such processes to generate efficient and ultra-long range of flow of energy along specific paths in systems consisting of biologically assembled nanostructures is a transformative frontier of research with many technological impacts. This requires uncharted capabilities to control the energy transfer routes in real space with very low amount of loss. This project is a collaborative interdisciplinary effort between research groups with expertise in nanophotonics at the University of Alabama in Huntsville and virus nanotechnology at the University of Oklahoma. The team will develop transformative concepts and physical/biological processes that allow transfer of excitation energy in viral energy circuits over ultra-long distances that are relevant to nanodevices and their integration. The biologically-inspired energy circuits will consist of a nanowire, formed via a genetically modifiable protein landscape (phage) and semiconductor nanocrystals, and two designated nanocrystals that act as light harvesting and receiver antennas. The team will develop a novel material platform that can dramatically change the normal properties of such nanocrystals, allowing the viral nanowires to transport energy over long distances by closely imitating photosynthesis process. This includes energy transfer between domains of nanocrystals correlated with each other via their interaction with metallic nanostructures. This project offers a new path towards application of biology for building devices with nanoscale dimension. It will also create new opportunities for the design of efficient bio-inorganic hybrid systems for light emitting devices, detectors, and sensors. This interdisciplinary project will integrate physical and biological education by implementing a strong teaching and mentoring component, and will introduce the essence of nanotechnology and nanoscience to high school students. Technical The overall goal of this project is to develop transformative concepts and physical/biological processes for energy-transporting materials that will involve bio-inorganic composite structures and biologically-inspired collective properties. These processes allow transfer of excitation energy in viral energy circuits over ultra-long distances that are relevant to nanodevices and their integration (100 nm or more). Quantum dot nanowires formed via genetically engineered non-toxic virus will be used as energy channels. These quantum dot-coated viral nanowires will be biologically conjugated to a light harvesting antenna (Up-Conversion Nanoparticles) in one end and quantum dot receivers at the other end, forming biologically-templated energy circuits. The team will develop a novel landscape of material structure called metal oxide plasmonic metasubstrate (MOPM) to generate the transformative processes needed to allow the light energy absorbed by the light harvesting nanoantennas to be transported to the QD receivers along QD nanowires with low energy loss. MOPMs will be formed via the creative composition of metallic nanoantenna arrays, dielectric materials, and metal oxides. Immobilizing the biologically-templated energy circuits to MOPM leads to (i) formation of domains of phase-correlated dipole-dipole coupling between QDs across the viral nanowires, (ii) ultrahigh enhancement of their radiative decay (Purcell effect), and (iii) suppression of their defect environments. The transport of the energy across viral QD nanowires occurs via the transfer of excitation energy between the phase-correlated domains, rather than between individual QDs, and formation of inter-domain coupling using surface lattice resonances or plasmonic coupling. MOPM enhances QD-induced exciton-plasmon coupling significantly, aligning the dipoles of QDs in each domain while suppressing transfer of their energies to the metallic nanoantennas. These lead to ultralong range inter-domain energy transfer before radiative or non-radiative losses kick in.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
某些光合生物的一个令人鼓舞的特征是它们能够以显着的效率和范围将能量从一种蛋白质转移到另一种蛋白质。已经表明,这种显著的光捕获过程深深植根于生理温度下的量子力学过程。模仿这样的过程,以产生有效的和超长范围的能量流沿着由生物组装的纳米结构组成的系统中的特定路径是一个具有许多技术影响的研究的变革性前沿。这需要未知的能力来控制真实的空间中的能量传输路线,并且损失量非常低。该项目是亨茨维尔亚拉巴马大学纳米光子学专业研究小组和俄克拉荷马州大学病毒纳米技术研究小组之间的跨学科合作。该团队将开发变革性的概念和物理/生物过程,允许在与纳米器件及其集成相关的超长距离内转移病毒能量电路中的激发能量。生物启发的能量电路将包括一个纳米线,通过遗传修饰的蛋白质景观(噬菌体)和半导体纳米晶体形成,以及两个指定的纳米晶体,作为光捕获和接收天线。该团队将开发一种新的材料平台,可以极大地改变这种纳米晶体的正常特性,使病毒纳米线能够通过密切模仿光合作用过程来长距离传输能量。这包括通过它们与金属纳米结构的相互作用相互关联的纳米晶体的域之间的能量转移。该项目为构建纳米尺度器件的生物学应用提供了一条新的途径。它还将为设计用于发光器件、检测器和传感器的高效生物-无机混合系统创造新的机会。这一跨学科项目将通过实施强有力的教学和指导部分来整合物理和生物教育,并将向高中学生介绍纳米技术和纳米科学的本质。 技术该项目的总体目标是为能量传输材料开发变革性概念和物理/生物过程,这些材料将涉及生物无机复合结构和生物启发的集体属性。这些过程允许病毒能量回路中的激发能量在与纳米器件及其集成相关的超长距离(100 nm或更长)上转移。通过基因工程无毒病毒形成的量子点纳米线将被用作能量通道。这些量子点涂层的病毒纳米线将在一端与光捕获天线(上转换纳米颗粒)生物结合,在另一端与量子点接收器结合,形成生物模板能量电路。该团队将开发一种称为金属氧化物等离子体元衬底(MOPM)的新型材料结构,以产生所需的变革过程,使光捕获纳米天线吸收的光能沿着沿着QD纳米线以低能量损失传输到QD接收器。MOPM将通过金属纳米天线阵列,介电材料和金属氧化物的创造性组合形成。将生物模板化的能量回路固定到MOPM导致(i)跨越病毒纳米线的QD之间的相位相关偶极-偶极耦合的域的形成,(ii)它们的辐射衰减(珀塞尔效应)的显著增强,以及(iii)它们的缺陷环境的抑制。能量跨病毒QD纳米线的传输经由激发能量在相位相关域之间而不是在单个QD之间的转移以及使用表面晶格共振或等离子体激元耦合形成域间耦合而发生。MOPM显著增强了QD诱导的激子-等离子体激元耦合,使每个域中的QD的偶极子对齐,同时抑制其能量向金属纳米天线的转移。这些导致超长范围的域间能量转移之前,辐射或非辐射损失踢英寸这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Control of in-plane light scattering using surface lattice resonances
使用表面晶格共振控制面内光散射
  • DOI:
    10.1117/12.2632451
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sadeghi, Seyed M.;Roberts, Dustin;Ramsay, Sean
  • 通讯作者:
    Ramsay, Sean
Coherent Networks of Plasmonic Dipole Domains: Long-Range Optical Coupling of Phase-Correlated Packages of Metallic Nanoparticles
等离激元偶极子域的相干网络:相位相关金属纳米粒子包的长程光学耦合
  • DOI:
    10.1103/physrevapplied.15.034018
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Sadeghi, Seyed M.;Gutha, Rithvik R.
  • 通讯作者:
    Gutha, Rithvik R.
Field/valley plasmonic meta-resonances in WS2 -metallic nanoantenna systems: Coherent dynamics for molding plasmon fields and valley polarization
  • DOI:
    10.1103/physrevb.105.035426
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    S. M. Sadeghi;Judy Z. Wu
  • 通讯作者:
    S. M. Sadeghi;Judy Z. Wu
Coherent transport of energy and polarization between monolayers of transition metal dichalcogenides
过渡金属二硫族化物单层之间的能量相干传输和极化
  • DOI:
    10.1088/2053-1583/ac1eaa
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Sadeghi, Seyed M;Wu, Judy Z
  • 通讯作者:
    Wu, Judy Z
Ultralong phase-correlated networks of plasmonic nanoantennas coherently driven by photonic modes
  • DOI:
    10.1016/j.apmt.2020.100932
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    S. M. Sadeghi;Rithvik R. Gutha
  • 通讯作者:
    S. M. Sadeghi;Rithvik R. Gutha
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seyed Sadeghi其他文献

Seyed Sadeghi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seyed Sadeghi', 18)}}的其他基金

Collaborative Research: Chemical and Biological Quantum Nanosensors Based on Nanoparticle Molecules
合作研究:基于纳米颗粒分子的化学和生物量子纳米传感器
  • 批准号:
    1234823
  • 财政年份:
    2012
  • 资助金额:
    $ 29.06万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 29.06万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 29.06万
  • 项目类别:
    Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.06万
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 29.06万
  • 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
  • 批准号:
    DE240100161
  • 财政年份:
    2024
  • 资助金额:
    $ 29.06万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
  • 批准号:
    2902365
  • 财政年份:
    2024
  • 资助金额:
    $ 29.06万
  • 项目类别:
    Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
  • 批准号:
    EP/Y031962/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.06万
  • 项目类别:
    Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
  • 批准号:
    EP/Y033124/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.06万
  • 项目类别:
    Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
  • 批准号:
    EP/Y033183/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.06万
  • 项目类别:
    Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
  • 批准号:
    NE/Y005457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.06万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了