Collaborative Research: Student Affect detection and Intervention with Teachers in the Loop

合作研究:学生情绪检测和与教师的干预

基本信息

  • 批准号:
    1917808
  • 负责人:
  • 金额:
    $ 24.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

In recent years, there has been increasing effort to integrate modern artificial intelligence technologies into adaptive learning systems to enhance student learning. One key emerging area is in the use of models that can recognize student emotion in context, referred to as affective states. These models typically take the form of machine learning classifiers that recognize affect from the student's interaction with an online learning system. In this project, the investigators will develop adaptive learning systems that actively enlist the help of teachers to develop better student affect detection methods. In return, the system will support the work of teachers by providing them reports on the affective state of each student in real-time. The system will then learn to mimic teachers' choices of intervention methods for disengaged students in order to deliver interventions automatically. Overall, this project is anticipated to lead to i) better understanding of how to leverage and align to teachers' perspectives in detecting and responding to affect, and ii) enhanced intervention by both teachers and automated software that re-engages students and improves learning outcomes.This project will be organized into three phases. First, the investigators will employ active machine learning methods to ask teachers to observe specific students when they have a break in classroom activity; these methods can improve the quality of the affect detectors by providing data on the students whose affective states are most informative to improve the classifier, rather than the standard method of developing these detectors by observing students in round-robin fashion. Second, the investigators will incorporate richer data types (specifically, self-reported confidence ratings of affect labels) into the detectors to improve their quality. These self-reported confidence ratings reflect how uncertain humans are about specific affect judgements, which will be compared to the uncertainty of classifiers, to possibly reveal insights into student affect, such as what the properties are of situations where affect is ambiguous. Third, the investigators will use crowdsourcing to solicit ideas from teachers as to when specific affect interventions will be appropriate for specific students, and will develop automated intervention methods using reinforcement learning. These automated intervention methods are highly scalable since they can enable the system to take the actions the teacher would take to intervene to support different students experiencing negative affect at the same time. This intervention system will be tested in real classrooms as students learn within ASSISTments, a free web-based learning platform used by over 60,000 students a year. If successful, this project will lead to new scientific discoveries on the dynamics of affect and new technology for scalable student affect detection and intervention.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,越来越多的人努力将现代人工智能技术整合到自适应学习系统中,以加强学生的学习。一个关键的新兴领域是使用能够在情境中识别学生情绪的模型,称为情感状态。这些模型通常采用机器学习分类器的形式,识别学生与在线学习系统交互的影响。在这个项目中,研究人员将开发自适应学习系统,积极争取教师的帮助,以开发更好的学生情感检测方法。作为回报,该系统将通过向教师提供关于每个学生的情感状态的实时报告来支持他们的工作。然后,该系统将学习模仿教师为未参与的学生选择的干预方法,以便自动提供干预。总体而言,这一项目预计将导致:1)更好地理解如何在检测和应对情感方面利用并与教师的观点保持一致;2)加强教师和自动化软件的干预,使学生重新参与进来,并改善学习结果。首先,调查人员将使用主动机器学习方法,要求教师观察特定学生在课堂活动中的休息时间;这些方法可以通过提供情感状态最具信息量的学生的数据来改进分类器,而不是通过循环观察学生来开发这些检测器的标准方法,从而提高情感检测器的质量。其次,调查人员将把更丰富的数据类型(具体地说,影响标签的自我报告置信度评级)纳入检测器,以提高其质量。这些自我报告的信心评分反映了人类对具体情感判断的不确定性,这将与分类器的不确定性进行比较,以可能揭示对学生情感的洞察,例如情感模棱两可的情景的属性是什么。第三,调查人员将使用众包来征求教师的意见,以确定何时特定的情感干预适合特定的学生,并将利用强化学习开发自动干预方法。这些自动干预方法具有高度的可扩展性,因为它们可以使系统能够采取教师将采取的干预措施,以支持同时经历负面影响的不同学生。这个干预系统将在真实的教室中进行测试,学生在ASSISTments学习,ASSISTments是一个免费的基于网络的学习平台,每年有超过6万名学生使用。如果成功,该项目将在情感动态方面带来新的科学发现,并为可扩展的学生情感检测和干预带来新的技术。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Past Data to Warm Start Active Machine Learning: Does Context Matter?
使用过去的数据来热启动主动机器学习:上下文重要吗?
Automated Scoring of Image-based responses to Open-ended mathematics question.
对开放式数学问题基于图像的回答的自动评分。
Effective Evaluation of Online Learning Interventions with Surrogate Measures
使用替代措施有效评估在线学习干预措施
Process-BERT: A Framework for Representation Learning on Educational Process Data
  • DOI:
    10.48550/arxiv.2204.13607
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Scarlatos;Christopher G. Brinton;Andrew S. Lan
  • 通讯作者:
    Alexander Scarlatos;Christopher G. Brinton;Andrew S. Lan
Enhancing Auto-scoring of Student Open Responses in the Presence of Mathematical Terms and Expressions
在存在数学术语和表达式的情况下增强学生开放式回答的自动评分
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Heffernan其他文献

Using Criterion as a self-study writing tool
使用Criterion作为自学写作工具
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Neil Heffernan;Junko Otoshi,Yoshitaka Kaneko;矢野謙一;Junko Otoshi;植田晃次;大年順子;矢野謙一;Junko Otoshi
  • 通讯作者:
    Junko Otoshi
PDCAサイクルから3ポジショニングシステムへ―学習者の自己成長と言語学習の自律化に向けた大学英語教員の正統的役割―
从PDCA循环到三定位体系 - 大学英语教师对学习者自我成长和语言学习自主性的合法作用 -
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akira Nakayama;Neil Heffernan;Hiroyuki Matsumoto;Tomohito Hiromori;伊東治己;金岡 正夫
  • 通讯作者:
    金岡 正夫
シンポジウム:新学習指導要領が目指すもの,目指すべきもの
座谈会:新课程纲要的目标是什么以及应该达到的目标
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroyuki Matsumoto;Neil Heffernan;ISHIKAWA Yuka;金岡正夫;伊東治己
  • 通讯作者:
    伊東治己
The Influence of Goal Orientation, Past Language studies
目标导向、过去语言研究的影响
初年次英語教育カリキュラムの実働化にむけて-科研成果報告書をもとに
迈向一年级英语教育课程的实际实施——基于科研成果报告
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroyuki Matsumoto;Neil Heffernan;ISHIKAWA Yuka;金岡正夫
  • 通讯作者:
    金岡正夫

Neil Heffernan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neil Heffernan', 18)}}的其他基金

Using ASSISTments for College Math: An Evaluation of the Effectiveness of Supports and Transferability of Findings
将 ASSISTments 用于大学数学:支持有效性和结果可转移性的评估
  • 批准号:
    2215842
  • 财政年份:
    2023
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Support for U.S. Doctoral Students to Participate in the Annual Artificial Intelligence in Education (AIED) and co-located Educational Data Mining (EDM) Conferences
支持美国博士生参加年度教育人工智能 (AIED) 和同期举办的教育数据挖掘 (EDM) 会议
  • 批准号:
    2225091
  • 财政年份:
    2022
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Common Error Diagnostics and Support in Short-answer Math Questions
合作研究:简答数学问题中的常见错误诊断和支持
  • 批准号:
    2118725
  • 财政年份:
    2021
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
REU Site: Leveraging The Learning Sciences & Technologies to Enhance Education and Learning in Secondary Schools
REU 网站:利用学习科学
  • 批准号:
    1950683
  • 财政年份:
    2020
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Cyber Infrastructure for Shared Algorithmic and Experimental Research in Online Learning
协作研究:框架:在线学习中共享算法和实验研究的网络基础设施
  • 批准号:
    1931523
  • 财政年份:
    2019
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Precision Learning: Data-Driven Experimentation of Learning Theories using Internet-of-Videos
协作研究:精准学习:使用视频互联网进行数据驱动的学习理论实验
  • 批准号:
    1940236
  • 财政年份:
    2019
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Putting Teachers in the Driver's Seat: Using Machine Learning to Personalize Interactions with Students (DRIVER-SEAT)
让教师掌握主动权:利用机器学习实现与学生的个性化互动 (DRIVER-SEAT)
  • 批准号:
    1822830
  • 财政年份:
    2018
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Personalizing Mathematics to Maximize Relevance and Skill for Tomorrow's STEM Workforce
个性化数学,最大限度地提高未来 STEM 劳动力的相关性和技能
  • 批准号:
    1759229
  • 财政年份:
    2018
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Support for Doctoral Students from U.S. Universities to Attend the 11th International Conference on Educational Data Mining (EDM 2018)
支持美国高校博士生参加第十一届教育数据挖掘国际会议(EDM 2018)
  • 批准号:
    1840771
  • 财政年份:
    2018
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
CIF21 DIBBs: PD: Enhancing and Personalizing Educational Resources through Tools for Experimentation
CIF21 DIBB:PD:通过实验工具增强和个性化教育资源
  • 批准号:
    1724889
  • 财政年份:
    2017
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309310
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309308
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
  • 批准号:
    2336368
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: From Courses to Careers - Addressing Ableism in Physics through Faculty-Student Partnerships
合作研究:从课程到职业——通过师生合作解决物理学能力歧视问题
  • 批准号:
    2336367
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing and empowering student success when traversing the academic help landscape
协作研究:在穿越学术帮助景观时描述并赋予学生成功的能力
  • 批准号:
    2336804
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing and empowering student success when traversing the academic help landscape
协作研究:在穿越学术帮助景观时描述并赋予学生成功的能力
  • 批准号:
    2336805
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309309
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309311
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
  • 批准号:
    2420369
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
  • 批准号:
    2345092
  • 财政年份:
    2024
  • 资助金额:
    $ 24.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了