A New Dataset and Field Experiment on Television News Consumption and Political Attitudes

电视新闻消费和政治态度的新数据集和现场实验

基本信息

  • 批准号:
    1917993
  • 负责人:
  • 金额:
    $ 66.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Does left- and right-leaning partisan media undermine democratic accountability and contribute to polarization? Could nudges to promote more balanced media diets stick and, in the long run, increase democratic accountability and reduce polarization? This project will investigate these questions using a novel dataset matching panel survey responses to TV viewership data and a randomized field experiment. This new dataset and research design will advance prior work by encouraging changes in media viewership and not relying on self-reported media consumption. Findings from this research will deepen the understanding of how citizens from across the ideological spectrum consume media and speak to the feasibility of a range of potential strategies to encourage citizens to form more balanced media habits. This will help catalyze the development of new interventions that could also be applied in the context of TV news, social media, and internet news.In this project, the PIs will conduct a randomized field experiment to investigate whether a temporary intervention can cause people to permanently broaden their media diets -- and whether this broader exposure increases political knowledge and decreases polarization. In the experiment, the PIs will incentivize current viewers of partisan media from across the ideological spectrum to consume substitute news for several weeks. The PIs will behaviorally track whether media consumption in the treatment group changes even after these incentives cease -- as citizens form new, lasting habits -- by using TV viewership data. To measure opinion change, the PIs will also conduct a series of panel surveys to measure both short- and long-term effects. Data from this project -- including the stimuli and the survey data matched to the TV viewership data -- will be made publicly available to promote future scholarship.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
左倾和右倾的党派媒体是否破坏了民主问责制并助长了两极分化?推动更平衡的媒体饮食能否持续下去,并从长远来看,增加民主问责制和减少两极分化?本项目将使用一个新的数据集匹配面板调查的反应,电视收视率数据和随机现场实验来调查这些问题。这个新的数据集和研究设计将通过鼓励媒体观众的变化而不是依赖自我报告的媒体消费来推进先前的工作。这项研究的结果将加深对不同意识形态的公民如何消费媒体的理解,并探讨一系列潜在策略的可行性,以鼓励公民形成更平衡的媒体习惯。这将有助于促进新的干预措施的发展,这些干预措施也可以应用于电视新闻,社交媒体和互联网新闻。在这个项目中,PI将进行随机现场实验,以调查临时干预是否会导致人们永久地扩大他们的媒体饮食-以及这种更广泛的接触是否会增加政治知识并减少两极分化。在实验中,PI将激励来自不同意识形态的党派媒体的当前观众在几周内消费替代新闻。PI将通过使用电视收视率数据,在行为上跟踪治疗组中的媒体消费是否发生了变化,即使在这些激励措施停止之后-随着公民形成新的,持久的习惯。为了衡量民意变化,PI还将进行一系列小组调查,以衡量短期和长期影响。从这个项目的数据-包括刺激和调查数据相匹配的电视收视率数据-将公开提供,以促进未来的奖学金。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua Kalla其他文献

COUNTER-STEREOTYPICAL MESSAGING AND PARTISAN CUES: MOVING THE NEEDLE ON VACCINES IN A POLARIZED U.S.
反刻板印象和党派暗示:在两极分化的美国推动疫苗发展
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Larsen;Marc J Hetherington;S. Greene;T. Ryan;Rahsaan Maxwell;S. Tadelis;Cameron Ballard;James Chu;Isabella de;Vere Hunt;P. Dupas;Brigham Fransden;Matt Gentzkow;Paul Gertler;Bryan Graham;Guido Imbens;Joshua Kalla;Pat Kline;Lars Lefgren;Randall Lewis;Eleni Linos;Mike MacKuen;Santiago Olivella;Linda Ong;Christopher Palmer;K. Ribisl;Jason Roberts;Darcy Sawatski;H. Varian
  • 通讯作者:
    H. Varian

Joshua Kalla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Construction of Integrated Story Foundation Dataset for Automatic Generation Using Hierarchical Structure
利用层次结构自动生成集成故事基础数据集的构建
  • 批准号:
    23K11772
  • 财政年份:
    2023
  • 资助金额:
    $ 66.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A characterisation and evaluation (C&E) dataset for a wild/semi-natural perennial ryegrass representative germplasm collection
表征和评估(C
  • 批准号:
    BB/X018598/1
  • 财政年份:
    2023
  • 资助金额:
    $ 66.63万
  • 项目类别:
    Research Grant
Collaborative Research: DESC: Type 1: Software-Hardware Recycling and Repair Dataset Infrastructure (SHReDI) for Sustainable Computing
合作研究:DESC:类型 1:用于可持续计算的软硬件回收和修复数据集基础设施 (SHReDI)
  • 批准号:
    2324949
  • 财政年份:
    2023
  • 资助金额:
    $ 66.63万
  • 项目类别:
    Standard Grant
Leveraging state drug overdose data to build a comprehensive case level national dataset to inform prevention and mitigation strategies.
利用州药物过量数据建立全面的病例级国家数据集,为预防和缓解策略提供信息。
  • 批准号:
    10701215
  • 财政年份:
    2023
  • 资助金额:
    $ 66.63万
  • 项目类别:
I-Corps: An automatic training dataset labelling tool to fill the gap for missing training image datasets
I-Corps:一种自动训练数据集标记工具,可填补训练图像数据集缺失的空白
  • 批准号:
    2335921
  • 财政年份:
    2023
  • 资助金额:
    $ 66.63万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 66.63万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 66.63万
  • 项目类别:
    Standard Grant
Multitask Image-Natural Language Correspondence Model Development using Large-Scale Medical Image Dataset
使用大规模医学图像数据集开发多任务图像-自然语言对应模型
  • 批准号:
    23K17229
  • 财政年份:
    2023
  • 资助金额:
    $ 66.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Risk and protective factors of post-traumatic stress disorder in the CLSA dataset
里昂证券数据集中创伤后应激障碍的风险和保护因素
  • 批准号:
    499241
  • 财政年份:
    2023
  • 资助金额:
    $ 66.63万
  • 项目类别:
    Operating Grants
Interactive visualization of genetic variant-trait associations in the CLSA dataset
里昂证券数据集中遗传变异-性状关联的交互式可视化
  • 批准号:
    499202
  • 财政年份:
    2023
  • 资助金额:
    $ 66.63万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了