FMitF: Collaborative Research: Track I: Predictive Online Safety Analysis from Multi-hop State Estimates for High-autonomy on Highways
FMITF:合作研究:第一轨:通过多跳状态估计进行预测在线安全分析,以实现高速公路的高度自治
基本信息
- 批准号:1918531
- 负责人:
- 金额:$ 48.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to bring safety assurance to autonomous and semi-autonomous vehicles. The approach is to lengthen the time that a car can predict its driving path, and share this path with surrounding vehicles. With these expanded predictions, it is possible to estimate the current and future behaviors of vehicles, according to their design models. Currently, online formal safety analysis can promise guarantees and oversight, but overly conservative approaches can lead to bad driving. This is in contrast to the use of test-driving data and machine learning to build driving models, which are difficult to analyze. The project aims to discover the right balance by computationally (1) estimating the current state of the autonomous vehicle and its multi-hop environment from sensor data, (2) predicting vehicle trajectories 4-6 seconds into future, and (3) checking the models and predictions---all in milliseconds. A new scientific workshop will be created to explore similar issues in autonomy, in addition to a new undergraduate course on autonomy.The project aims to deliver (1) new sensor-fusion algorithms over Vehicle-to-Infrastructure/Vehicle (V2X) systems, (2) a first-of-its-kind open, machine-interpretable library of agent models for driving predictions, (3) algorithms for model identification, and (4) algorithms for checking safety online. These modules will be integrated in an end-to-end system --- OmniVisor --- and evaluated in realistic accident-prone scenarios with real vehicles in University of Michigan's Mcity facility. The research will build connections across the disciplines of formal methods, hybrid dynamical systems, estimation and detection theory, and mobile networking. If successful OmniVisor will provide a scientific basis for obtaining safety assurances for vehicles in mixed-autonomy scenarios and experimentally demonstrate the approach on the road with real vehicles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是为自动驾驶和半自动驾驶汽车提供安全保障。该方法是延长汽车可以预测其行驶路径的时间,并与周围的车辆共享该路径。通过这些扩展的预测,可以根据车辆的设计模型来估计车辆的当前和未来行为。目前,在线正式的安全分析可以保证和监督,但过于保守的方法可能导致不良驾驶。这与使用试驾数据和机器学习来构建驾驶模型形成了鲜明对比,这些模型很难分析。该项目旨在通过计算来发现正确的平衡:(1)根据传感器数据估计自动驾驶汽车的当前状态及其多跳环境,(2)预测未来4 - 6秒的车辆轨迹,以及(3)检查模型和预测-所有这些都在毫秒内。该项目旨在提供(1)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(2)第一个开放的、机器可解释的驾驶预测代理模型库,(3)模型识别算法,(4)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(5)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(6)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(7)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(8)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(9)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(10)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(11)车辆到基础设施/车辆(V2X)系统上的新传感器融合算法,(12)车辆到基础设施/车辆((4)在线安全检查算法。这些模块将被集成到一个端到端的系统----OmniVisor----并在密歇根大学Mcity设施中使用真实的车辆在现实的事故多发场景中进行评估。该研究将建立跨学科的正式方法,混合动力系统,估计和检测理论,和移动的网络连接。如果成功,OmniVisor将为混合自动驾驶场景下的车辆获得安全保证提供科学依据,并在道路上用真实的车辆进行实验演示。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Voice localization using nearby wall reflections
- DOI:10.1145/3372224.3380884
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Sheng Shen
- 通讯作者:Sheng Shen
Planning in Dynamic and Partially Unknown Environments
- DOI:10.1016/j.ifacol.2021.08.493
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kristina Miller;Chuchu Fan;S. Mitra
- 通讯作者:Kristina Miller;Chuchu Fan;S. Mitra
???????????? : Boosting Scenario Verification Using Symmetry Abstractions
????????????
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Hussein Sibai;Yangge Li;Sayan Mitra
- 通讯作者:Sayan Mitra
Egocentric abstractions for modeling and safety verification of distributed cyber-physical systems
用于分布式网络物理系统建模和安全验证的以自我为中心的抽象
- DOI:10.1109/spw53761.2021.00046
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Jeon, Sung Woo;Mitra, Sayan
- 通讯作者:Mitra, Sayan
Symmetry for Boosting Algorithmic Proofs of Cyberphysical Systems
对称性促进网络物理系统的算法证明
- DOI:10.1109/mc.2022.3190954
- 发表时间:2022
- 期刊:
- 影响因子:2.2
- 作者:Mitra, Sayan;Sibai, Hussein
- 通讯作者:Sibai, Hussein
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sayan Mitra其他文献
Assured Collision Avoidance for Learned Controllers: A Case Study of ACAS Xu
确保学习控制器避免碰撞:ACAS Xu 的案例研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Gokul Puthumanaillam;Manav Vora;Taha Shafa;Yangge Li;Melkior Ornik;Sayan Mitra - 通讯作者:
Sayan Mitra
P23-080-23 Impact of an Intensive Lifestyle Program on Low Attenuation Plaque and Myocardial Perfusion in Coronary Heart Disease: A Randomised Clinical Trial Protocol
- DOI:
10.1016/j.cdnut.2023.100188 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:
- 作者:
Tian Wang;Sophie Cassidy;Cynthia Kroeger;Sayan Mitra;Rosilene Ribeiro;Andrius Masedunskas;Robin Huang;Luigi Fontana - 通讯作者:
Luigi Fontana
ARCH-COMP20 Category Report: Continuous and Hybrid Systems with Linear Continuous Dynamics
ARCH-COMP20 类别报告:具有线性连续动态的连续和混合系统
- DOI:
10.29007/7dt2 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Matthias Althoff;Stanley Bak;Zongnan Bao;M. Forets;Goran Frehse;Daniel Freire;Niklas Kochdumper;Yangge Li;Sayan Mitra;Rajarshi Ray;Christian Schilling;Stefan Schupp;Mark Wetzlinger - 通讯作者:
Mark Wetzlinger
Refining Perception Contracts: Case Studies in Vision-based Safe Auto-landing
细化感知契约:基于视觉的安全自动着陆案例研究
- DOI:
10.48550/arxiv.2311.08652 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yangge Li;Benjamin C Yang;Yixuan Jia;Daniel Zhuang;Sayan Mitra - 通讯作者:
Sayan Mitra
Specifying and proving properties of timed I/O automata using Tempo
- DOI:
10.1007/s10617-008-9022-2 - 发表时间:
2008-07-09 - 期刊:
- 影响因子:0.900
- 作者:
Myla Archer;Hongping Lim;Nancy Lynch;Sayan Mitra;Shinya Umeno - 通讯作者:
Shinya Umeno
Sayan Mitra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sayan Mitra', 18)}}的其他基金
CPS:SMALL: Privacy-preserving Network Congestion Control: Theory and Applications
CPS:SMALL:隐私保护网络拥塞控制:理论与应用
- 批准号:
1739966 - 财政年份:2017
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
II-New: CyPhyHouse: A Laboratory for Evolving Distributed and Mobile Cyber-Physical Systems Research
II-新:CyPhyHouse:不断发展的分布式和移动网络物理系统研究实验室
- 批准号:
1629949 - 财政年份:2016
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
CSR: Small: From Simulations to Proofs for Cyberphysical Systems
CSR:小:从网络物理系统的模拟到证明
- 批准号:
1422798 - 财政年份:2014
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
CAREER: Algorithms and Verification for Reliable Distributed Cyber-Physical Systems
职业:可靠的分布式网络物理系统的算法和验证
- 批准号:
1054247 - 财政年份:2011
- 资助金额:
$ 48.95万 - 项目类别:
Continuing Grant
CSR: Small: Verifying Simulink-Stateflow models
CSR:小型:验证 Simulink-Stateflow 模型
- 批准号:
1016791 - 财政年份:2010
- 资助金额:
$ 48.95万 - 项目类别:
Continuing Grant
相似海外基金
FMitF: Collaborative Research: RedLeaf: Verified Operating Systems in Rust
FMITF:协作研究:RedLeaf:经过验证的 Rust 操作系统
- 批准号:
2313411 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Game Theoretic Updates for Network and Cloud Functions
合作研究:FMitF:第一轨:网络和云功能的博弈论更新
- 批准号:
2318970 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Knitting Semantics
合作研究:FMitF:第一轨:针织语义
- 批准号:
2319182 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
- 批准号:
2319242 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
- 批准号:
2349461 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
- 批准号:
2319243 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
- 批准号:
2319400 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Synthesis and Verification of In-Memory Computing Systems using Formal Methods
合作研究:FMitF:第一轨:使用形式方法合成和验证内存计算系统
- 批准号:
2319399 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: A Formal Verification and Implementation Stack for Programmable Logic Controllers
合作研究:FMitF:第一轨:可编程逻辑控制器的形式验证和实现堆栈
- 批准号:
2425711 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Simplifying End-to-End Verification of High-Performance Distributed Systems
合作研究:FMitF:第一轨:简化高性能分布式系统的端到端验证
- 批准号:
2318954 - 财政年份:2023
- 资助金额:
$ 48.95万 - 项目类别:
Standard Grant














{{item.name}}会员




