SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
基本信息
- 批准号:1919181
- 负责人:
- 金额:$ 26.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our society increasingly relies on applications that process streaming data across geo-distributed sites, such as making business decisions from marketing data, identifying spam campaigns in social network streams, and analyzing genome datasets in different labs and countries to track the sources of potential epidemics. State-of-art solutions for these needs are centered around stateless stream processing. This project advances stream processing to enable next-generation streaming applications to store and update state along with computation, therefore processing live data streams in a timely fashion from massive and geo-distributed datasets. Existing systems are mainly designed for stateless stream processing in intra-datacenter settings and do not scale well for running stream applications that contain large distributed states. This project breaks the traditional abstractions of a centralized architecture and hashtable-based stateless operators, redefining them with a new decentralized architecture and new memory-efficient stateful operators, which enables novel approaches to improve overall system performance and scalability. This project builds a next-generation geo-distributed scalable stateful stream processing system that will significantly improve the scalability of stream processing systems. This work includes three primary research directions. (1) At the architecture level, a new decentralized 'many masters/many workers' architecture will be proposed, which provides each master with maximum independence. (2) At the operator level, a new in-memory data structure will be designed and implemented to store application state and minimize the memory overhead so as to handle 'big data' requirements. (3) A new shard-based parallel recovery mechanism will be proposed to handle failures and stragglers in a scalable way. All three parts of the project will be prototyped and implemented on a widely adopted stream processing system (Apache Storm).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们的社会越来越依赖于处理跨地理分布站点的流数据的应用程序,例如根据营销数据做出商业决策,识别社交网络流中的垃圾邮件活动,以及分析不同实验室和国家的基因组数据集以跟踪潜在流行病的来源。满足这些需求的最先进的解决方案是围绕无状态流处理。该项目推进流处理,使下一代流应用程序能够存储和更新状态沿着计算,从而及时处理来自海量和地理分布数据集的实时数据流。现有的系统主要是为数据中心内设置中的无状态流处理而设计的,并且对于运行包含大型分布式状态的流应用程序来说,不能很好地扩展。该项目打破了集中式架构和基于哈希表的无状态操作符的传统抽象,用新的分散式架构和新的内存高效的有状态操作符重新定义它们,从而实现了新的方法来提高整体系统性能和可扩展性。 该项目构建了一个下一代地理分布的可扩展的有状态流处理系统,将显着提高流处理系统的可扩展性。这项工作包括三个主要的研究方向。(1)在体系结构层次上,提出了一种新的分散的“多主/多工”体系结构,它为每个主提供了最大的独立性。(2)在操作员级别,将设计和实现一种新的内存数据结构来存储应用程序状态,并最大限度地减少内存开销,以处理“大数据”需求。(3)提出了一种新的基于分片的并行恢复机制,以可扩展的方式处理故障和掉队者。该项目的所有三个部分都将在一个广泛采用的流处理系统(Apache Storm)上原型化和实现。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FP4S: Fragment-based Parallel State Recovery for Stateful Stream Applications
- DOI:10.1109/ipdps47924.2020.00116
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Pinchao Liu;Hailu Xu;D. D. Silva-D.;Qingyang Wang;Sarker Tanzir Ahmed;Liting Hu
- 通讯作者:Pinchao Liu;Hailu Xu;D. D. Silva-D.;Qingyang Wang;Sarker Tanzir Ahmed;Liting Hu
SR3: Customizable Recovery for Stateful Stream Processing Systems
- DOI:10.1145/3423211.3425681
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Hailu Xu;Pinchao Liu;Susana Cruz-Diaz;D. D. Silva-D.;Liting Hu
- 通讯作者:Hailu Xu;Pinchao Liu;Susana Cruz-Diaz;D. D. Silva-D.;Liting Hu
DART: A Scalable and Adaptive Edge Stream Processing Engine
DART:可扩展的自适应边缘流处理引擎
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Liu, Pinchao;Silva, Dilma Da;Hu, Liting.
- 通讯作者:Hu, Liting.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abdullah Muzahid其他文献
Abdullah Muzahid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abdullah Muzahid', 18)}}的其他基金
SHF: Small: Software and Hardware Support for Robust Deep Learning
SHF:小型:强大深度学习的软件和硬件支持
- 批准号:
2301334 - 财政年份:2023
- 资助金额:
$ 26.19万 - 项目类别:
Standard Grant
CAREER: A Dynamic Program Monitoring Framework Using Neural Network Hardware
职业:使用神经网络硬件的动态程序监控框架
- 批准号:
1931078 - 财政年份:2018
- 资助金额:
$ 26.19万 - 项目类别:
Continuing Grant
CAREER: A Dynamic Program Monitoring Framework Using Neural Network Hardware
职业:使用神经网络硬件的动态程序监控框架
- 批准号:
1652655 - 财政年份:2017
- 资助金额:
$ 26.19万 - 项目类别:
Continuing Grant
SHF: Small: Novel Techniques for Handling Memory Model Bugs
SHF:小:处理内存模型错误的新技术
- 批准号:
1319983 - 财政年份:2013
- 资助金额:
$ 26.19万 - 项目类别:
Standard Grant
相似海外基金
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 26.19万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 26.19万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
2412182 - 财政年份:2023
- 资助金额:
$ 26.19万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 26.19万 - 项目类别:
Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
- 批准号:
2202859 - 财政年份:2022
- 资助金额:
$ 26.19万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
2333009 - 财政年份:2022
- 资助金额:
$ 26.19万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
- 批准号:
2132049 - 财政年份:2021
- 资助金额:
$ 26.19万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2113307 - 财政年份:2020
- 资助金额:
$ 26.19万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
1919117 - 财政年份:2019
- 资助金额:
$ 26.19万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
1918987 - 财政年份:2019
- 资助金额:
$ 26.19万 - 项目类别:
Standard Grant