SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing

SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性

基本信息

  • 批准号:
    1919182
  • 负责人:
  • 金额:
    $ 35.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Future computer data centers are being flooded with workloads requiring high-levels of computation using power-hungry deep neural network (DNN) models. DNN accelerators based on processing in memory built with new storage devices can offer great energy efficiency and performance for data centers. One challenge faced by these accelerators is their poor stability. This is due to the physical limitations of the new storage devices. This project aims to address this issue by developing efficient approaches to neural networks. One impact of proposed research is to develop more powerful, scalable, and sustainable deep learning computing systems. This will result in new consumer, business, scientific and national security applications. It will affect the fields of big data and cloud computing. This project will lead to new results in Computer Engineering and in fields that are hungry for deep learning capabilities. It will expose students to cutting-edge knowledge and hands-on research opportunities and elevate their competence. It will increase their confidence in facing today's highly competitive global job market. The education impact includes course integration of research results and outreach activities. Special attention is given in this to including women and underrepresented minority groups.The goal of the proposed research is to address a key issue in existing processing-in-memory-based neural network accelerators built with emerging nonvolatile devices, which is the bad stability due to weight uncertainties induced by the device characteristics. To escalate the stability of these promising emerging accelerators in a scalable and sustainable manner for future data centers, the project will include four tasks: 1) the explicitly modeling of weight uncertainties, which may exhibit spatial correlations extracted from device non-idealities, as parameterized canonical distributions. 2) a statistical neural network paradigm, which can be easily integrated into existing convolutional neural network architectures by replacing their deterministic operations with the statistical counterparts operating on parameterized canonical distributions. 3) variability-aware neural network classifier inspired by error correction output codes and modern neural network architecture. 4) variability-aware input pre-processing without touching neural networks. These paradigms will be generic to different software and hardware platforms, and will be implemented and evaluated with a wide set of real-world applications including image classification, biomedical image segmentation, and drone target tracking.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来的计算机数据中心正充斥着需要使用耗电的深度神经网络(DNN)模型进行高水平计算的工作负载。DNN加速器基于使用新存储设备构建的内存处理,可以为数据中心提供巨大的能源效率和性能。这些加速器面临的一个挑战是它们的稳定性差。这是由于新存储设备的物理限制。该项目旨在通过开发有效的神经网络方法来解决这个问题。拟议研究的一个影响是开发更强大、可扩展和可持续的深度学习计算系统。这将带来新的消费者、商业、科学和国家安全应用。它将影响大数据和云计算领域。这个项目将在计算机工程和需要深度学习能力的领域带来新的成果。它将使学生接触到前沿知识和实践研究机会,提高他们的能力。这将增强他们面对当今竞争激烈的全球就业市场的信心。教育影响包括研究成果的课程整合和推广活动。其中特别注意包括妇女和代表性不足的少数群体。该研究的目的是解决现有基于内存处理的神经网络加速器中存在的一个关键问题,即由器件特性引起的权重不确定性导致的稳定性差。为了在未来的数据中心中以可扩展和可持续的方式提升这些有前途的新兴加速器的稳定性,该项目将包括四个任务:1)明确建模权重不确定性,权重不确定性可能表现出从设备非理想性中提取的空间相关性,作为参数化规范分布。2)一种统计神经网络范式,它可以很容易地集成到现有的卷积神经网络架构中,通过使用参数化正则分布的统计对应操作来取代卷积神经网络的确定性操作。3)受纠错输出码和现代神经网络架构启发的可变性感知神经网络分类器。4)不接触神经网络的可变性感知输入预处理。这些范例将适用于不同的软件和硬件平台,并将在包括图像分类、生物医学图像分割和无人机目标跟踪在内的广泛实际应用中实施和评估。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wujie Wen其他文献

EFENDING DNN A DVERSARIAL A TTACKS WITH P RUNING AND L OGITS A UGMENTATION
通过剪枝和逻辑增强来防御 DNN 对抗攻击
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shaokai Ye;Siyue Wang;Xiao Wang;Bo Yuan;Wujie Wen;X. Lin
  • 通讯作者:
    X. Lin
AdaPI: Facilitating DNN Model Adaptivity for Efficient Private Inference in Edge Computing
AdaPI:促进 DNN 模型适应性,以实现边缘计算中的高效私有推理
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tong Zhou;Jiahui Zhao;Yukui Luo;Xi Xie;Wujie Wen;Caiwen Ding;Xiaolin Xu
  • 通讯作者:
    Xiaolin Xu
FlexLevel NAND Flash Storage System Design to Reduce LDPC Latency
FlexLevel NAND 闪存存储系统设计可减少 LDPC 延迟
Deep-evasion: Turn deep neural network into evasive self-contained cyber-physical malware: poster
深度规避:将深度神经网络变成规避的独立网络物理恶意软件:海报
Error Characterization and Correction Techniques for Reliable STT-RAM Designs
  • DOI:
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wujie Wen
  • 通讯作者:
    Wujie Wen

Wujie Wen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wujie Wen', 18)}}的其他基金

SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
CAREER: Dependable and Secure Machine Learning Acceleration from Untrusted Hardware
职业:来自不受信任的硬件的可靠且安全的机器学习加速
  • 批准号:
    2238873
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247891
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Continuing Grant
CAREER: Dependable and Secure Machine Learning Acceleration from Untrusted Hardware
职业:来自不受信任的硬件的可靠且安全的机器学习加速
  • 批准号:
    2349538
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2348733
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Continuing Grant
EAGER: Invisible Shield: Can Compression Harden Deep Neural Networks Universally Against Adversarial Attacks?
EAGER:隐形盾牌:压缩能否使深层神经网络普遍抵御对抗性攻击?
  • 批准号:
    2011260
  • 财政年份:
    2019
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Retraining-free Concurrent Test and Diagnosis in Emerging Neural Network Accelerators
SHF:小型:协作研究:新兴神经网络加速器中的免再训练并发测试和诊断
  • 批准号:
    2011236
  • 财政年份:
    2019
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2006748
  • 财政年份:
    2019
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Retraining-free Concurrent Test and Diagnosis in Emerging Neural Network Accelerators
SHF:小型:协作研究:新兴神经网络加速器中的免再训练并发测试和诊断
  • 批准号:
    1910022
  • 财政年份:
    2019
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
EAGER: Invisible Shield: Can Compression Harden Deep Neural Networks Universally Against Adversarial Attacks?
EAGER:隐形盾牌:压缩能否使深层神经网络普遍抵御对抗性攻击?
  • 批准号:
    1840813
  • 财政年份:
    2018
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant

相似海外基金

SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2408925
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    2412182
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
  • 批准号:
    2318628
  • 财政年份:
    2022
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    2333009
  • 财政年份:
    2022
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
  • 批准号:
    2202859
  • 财政年份:
    2022
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
  • 批准号:
    2132049
  • 财政年份:
    2021
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2113307
  • 财政年份:
    2020
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
  • 批准号:
    1919117
  • 财政年份:
    2019
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    1918987
  • 财政年份:
    2019
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了